| Date Submitted: | | Sheet | of | |-----------------|--|-------|----| | | CONCRETE GIRDER BRIDGE RATING DATA SHEET | | | | Structure Number | BIN: | Year Built: | | |---|--------------------------------|-------------------------------|-------------------| | County/City: | Division: | Feature Intersected:_ | | | Project Number: | Standard Drawing | No. (If applicable): | | | Number of Spans: | Span Lengths: | | | | | DECK DETA | ıls | | | Deck: Thickness =inches | | | | | Overlay Material: None Asphalt: | Thickness:incl | nes Crushed Stone: Th | nickness:inches | | _ | inches Other | | | | Curb: Curb Height: | inches | tth Top: Bottom: _ | (inches) | | Guardrail Type: ☐ Flexbeam ☐ Conce | | ber New Jersey Barrier | □ None | | Post Material: □ Timber □ Steel Common Curb, Post & Rail Configuration | | | _ | | | 6" 1'6" | 7" 1'4" | Alumi num | | Girder Type: ☐ Reinforced Concrete Sla | .b (Will need plans or standar | d drawing number to rate) | | | ☐ Simple Span Reinforced | d Concrete Deck Girder | | | | Continuous Span Haunci | hed Reinforced Concrete Dec | k Girder | | | ☐ Precast Channel Spans | | | | | ☐Prestressed AASHTO or | Bulb – T Girders (Will nee | d plans or standard drawing n | number to rate) | | ☐ Simple Spans | ☐ Continuous for Live Loa | nd | | | ☐ Type I ☐ Ty | rpe II ☐ Type III ☐ T | Type IV ☐ BT-54 ☐ | BT – 63 □ BT – 72 | | Other: | | | | | (Will need Plans to Rate) | | | | ## PRECAST CONCRETE CHANNEL STRUCTURES This sheet refers to spans _____ #### SPAN LENGTH DEFINITIONS Girder Length: ______ Clear Span: ______ B1: _____ B2: _____ Unit ### **Dimensions:** $$b_w = \underline{\hspace{1cm}} H_w = \underline{\hspace{1cm}} t_{fillet} = \underline{\hspace{1cm}}$$ $$b_w = \underline{\hspace{1cm}} H_w = \underline{\hspace{1cm}} t_{fillet} = \underline{\hspace{1cm}}$$ $$b_w = \underline{\hspace{1cm}} H_w = \underline{\hspace{1cm}} t_{fillet} = \underline{\hspace{1cm}}$$ **Common Curb Unit Configurations:** Circle one that applies or supply Sketch if different **Cross Section:** Draw Sketch of Curb Unit Roadway Width = _____ (Curb to Curb) "S12" #### SIMPLE SPAN REINFORCED CONCRETE DECK GIRDER STRUCTURES # This sheet refers to spans SPAN LENGTH DEFINITIONS Girder Length: _____ Clear Span: _____ B1: ____ B2: ____ ## **Cross Section:** Roadway Width = _____ OH1 = ____ OH2 = _____ OH2 = _____ G1: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S1 =$ ______ G2: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S2 =$ ______ G3: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S3 =$ ______ G4: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S4 =$ ______ G5: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S5 =$ ______ G6: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S6 =$ ______ G7: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S7 =$ ______ G8: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S8 =$ ______ G9: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S9 =$ ______ G10: $$b_{w} =$$ ______ $H_{w} =$ ______ $t_{fillet} =$ ______ $S10 =$ ______ G11: $$b_w =$$ _____ $H_w =$ _____ $t_{fillet} =$ _____ $S11 =$ _____ G12: $$b_w =$$ ______ $H_w =$ ______ $t_{fillet} =$ ______ $S12 =$ ______ *** NOTE: All dimensions shown should be exact. Do not round, approximate or average measurements. G13: $$b_w = \underline{\hspace{1cm}} H_w = \underline{\hspace{1cm}} t_{fillet} = \underline{\hspace{1cm}}$$ #### CONTINUOUS SPAN REINFORCED CONCRETE DECK GIRDER STRUCTURES #### This sheet refers to spans Continuous Span Definitions First Span: Span #: _____ Span Length: ___ C – C Bearing: _ B1: Diaphram Spacing: D1: _____ D2: ____ D3: ____ D4: ____ D5: _____ **Interior Spans:** Span #: _____ Span Length: ___ D1: D2: D3: D4: D5: Span #: _____ Span Length: _____ Diaphram Spacing: Diaphram Spacing: Diaphram Spacing: D1: _____ D2: ____ D3: ____ D4: ____ D5: ____ Last Span: Span #: C – C Bearing: D1: _____ D2: ____ D3: ____ D4: ____ B2: D5: ## **Cross Section:** Roadway Width = __ (Curb to Curb) Deck Width = _ OH1 = OH2 = CIRCLE THE GIRDER SHAPE G1: $$b_{w} =$$ _____ $$H_{wpos} = \underline{\hspace{1cm}}$$ $$H_{wneg} = \underline{\hspace{1cm}} t_{fillet} = \underline{\hspace{1cm}}$$ G2: $$b_w =$$ _____ $$H_{wpos} =$$ $$H_{\text{wneg}} = \underline{\qquad} t_{\text{fillet}} = \underline{\qquad}$$ G3: $$b_w =$$ _____ $$H_{\text{wpos}} = \underline{\hspace{1cm}}$$ $$H_{wpos} =$$ ______ $H_{wneg} =$ ______ $t_{fillet} =$ _____ G4: $$b_w =$$ _____ $$H_{wpos} = \underline{\hspace{1cm}}$$ $$H_{\mathrm{wneg}} =$$ $t_{\mathrm{fillet}} =$ $$G5: b_{w} =$$ $$H_{\text{wpos}} = \underline{\hspace{1cm}} H_{\text{wneg}} = \underline{\hspace{1cm}} t_{\text{fillet}} = \underline{\hspace{1cm}}$$ $$H_{wpos} =$$ $$H_{wpos} =$$ ______ $H_{wneg} =$ _____ $$H_{\text{wneg}} = \underline{\qquad} t_{\text{fillet}} = \underline{\qquad}$$ $$H_{\text{wpos}} = \underline{\hspace{1cm}}$$ $$H_{wneg} =$$ $t_{fillet} =$ #### PRESTRESSED CONCRETE GIRDER STRUCTURES ## This sheet refers to spans **Cross Section:** CIRCLE THE GIRDER SHAPE (Curb to Curb) Number of Girders = _____ Girder Spacing = _____ D = ____ inches b_f = ____ inches Span #:_____ Span Length: _____ C-C Bearing: _____ Is this span \square Simple \square Live Load Continuous Diaphram Spacing: D1 = _____ D2 = ____ D3 = ____ D4 = ____ D5 = ____ Diaphram Spacing: D1 = D2 = D3 = D4 = D5 = Diaphram Spacing: D1 = D2 = D3 = D4 = D5 = Diaphram Spacing: D1 =_____ D2 =_____ D3 =_____ D4 =_____ D5 =_____ Diaphram Spacing: D1 = _____ D2 = ____ D3 = ____ D4 = ____ D5 = ____ Date Submitted: LEFT SIDE BIN:_____ Sheet _____ of ____ ### SKEWED, CURVED AND FLARED SPANS **Deck Geometry:** Are the Bridge Spans Skewed: $\square Y \square N$ Curved: $\square Y \square N$ Flared: $\square Y \square N$ Span: Roadway Width: End "A" End "B" Skew Width: End "A" End "B" Length: Left Side Right Side Span: Roadway Width: End "A" End "B" Skew Width: End "A" End "B" Length: Left Side Right Side Span: Roadway Width: End "A" End "B" Skew Width: End "A" End "B" Length: Left Side Right Side Span: ____ Roadway Width: ___ Skew Width: ___ Length: ___ Left Side Right Side Span: ____ Roadway Width: ___ Skew Width: ___ Length: ___ Left Side Right Side | Date Submitted: | _ | BIN:_ | | Sheet | of | |--|---------------|---------------------|-------------------------------|--------------------------------|--------------------| | Substructure Material: TIMBER | STEEL | CONCRETE | OTHER (specify): | | | | Sketch any loss of section that ma | y affect the | e safe load capac | ity of the structure showing | location and extent of flav | v(s). | Please sketch any unusual charact | omistic of th | as stanisting that | mov mod enosial considerat | | | | Please sketch any unusual charact | eristic of ti | ie structure that i | may need special considerat | ion. | Some structures have several difference forms as necessary to describe the | | | erall sketch of the structure | is helpful in such a situation | on. Submit as many |