TABLE OF CONTENTS

EXECUTIVE SUMMARY .. I

- Roads and Bridges ... i
- Transit ... ii
- Bicycle and Pedestrian Systems ... ii
- Freight Transportation Systems .. ii
- Aviation .. ii
- Funding .. iii

1. **INTRODUCTION AND BACKGROUND** ... 1-1

 - The Statewide Transportation Planning Process ... 1-1
 - Approach to Current Plan .. 1-4
 - The Role of the MPOs and RPOs / RPCs in Transportation Planning ... 1-5
 - Planning Areas .. 1-7
 - Statewide Travel Demand Model .. 1-7
 - Statewide Transportation Freight Movement Model Coordination .. 1-11
 - SWTP Public Involvement and Agency Coordination ... 1-11
 - Public Involvement Process Action Plan .. 1-11
 - ALDOT Study Management Committee (SMC) ... 1-12
 - ALDOT Study Coordination Team (SCT) .. 1-12
 - ALDOT Technical Modeling Team (TMT) .. 1-12
 - SWTP Technical Advisory Committee (TAC) .. 1-13
 - SWTP Stakeholder Advisory Group (SAG) .. 1-13
 - Stakeholder and Public Outreach Results .. 1-15
 - SWTP Update Goals and Measures of Condition .. 1-16

2. **TRANSPORTATION SYSTEM OVERVIEW AND ASSESSMENT** .. 2-1

 - Approach and Methodology .. 2-1
 - Roadway Conditions and Needs .. 2-3
 - National Highway System .. 2-3
 - Functional Classification ... 2-4
 - Congested Roadways .. 2-6
 - Complete Streets ... 2-10
 - Truck Traffic ... 2-10
 - Intelligent Transportation Systems .. 2-14
 - Maintenance ... 2-15
 - Emergency Evacuation Routes .. 2-18
 - Safety .. 2-20
 - Bridges ... 2-22
 - Road and Bridge Conditions by Planning Area ... 2-26
3. TRANSPORTATION RELATED ISSUES .. 3-1

Access Management ... 3-1

Economic Development .. 3-1
 Strategic Corridors ... 3-1
 High Priority Corridors ... 3-3
 Appalachian Regional Corridors ... 3-6
 El Camino Real ... 3-7
 Corridor Needs ... 3-7

Environmental Protection ... 3-7
 Air Quality .. 3-9
 Water Quality .. 3-10
 Wildlife .. 3-10
 Cultural and Historic Resources 3-11
 SAFETEA-LU Requirements for Consultation and Environmental Mitigation .. 3-11

4. FINANCING THE TRANSPORTATION PROGRAM................................. 4-1

Federal Highway Trust Fund ... 4-1

Federal Legislation – SAFETEA-LU ... 4-1

Funding and Expenditure History ... 4-2

Overview of State Funding .. 4-3
 Gasoline Tax ... 4-3
 Other Fuel and Vehicle Taxes .. 4-3

Projected Funding by Mode .. 4-4
 Roads and Bridges .. 4-4
 Transit .. 4-6
 Railroads ... 4-7
 Ports and Waterways ... 4-7

Transit and Passenger Rail .. 2-34
 Major System Ridership .. 2-35
 Rural Systems ... 2-36
 Transit Services for the Elderly and Disabled 2-36
 United We Ride ... 2-39
 Making Better Use .. 2-39
 Transit Needs ... 2-39
 Passenger Rail ... 2-40
 Passenger Rail Needs .. 2-41
 Light Rail .. 2-41

Bicycle and Pedestrian Systems ... 2-41
 Bicycle and Pedestrian Stakeholder Input to the SWTP Update .. 2-43
 Safe Routes to Schools .. 2-43

Freight .. 2-44
 Ports and Waterways ... 2-44
 Railroads ... 2-48
 Aviation .. 2-49
Projection of Needs ... 4-8
Roads .. 4-8
Bridges .. 4-8
Transit .. 4-9
Pedestrian and Bicycle ... 4-9
Aviation, Railroads and Intermodal Facilities ... 4-9
Financing Summary .. 4-10

5. RECOMMENDATIONS ... 5-1
 Project Identification Process .. 5-1
 Importance .. 5-1
 Recommendation ... 5-2
 System Operations and Capacity ... 5-2
 Importance .. 5-2
 Recommendation ... 5-2
 Interagency Coordination and Public Outreach .. 5-2
 Importance .. 5-2
 Recommendation ... 5-3
 Funding .. 5-3
 Importance .. 5-3
 Recommendation ... 5-3
 Economic Development ... 5-3
 Importance .. 5-3
 Recommendation ... 5-4

6. APPENDICES .. 6-1
 Appendix A – Metropolitan Planning Organization Profiles 6-1
 Auburn/Opelika MPO ... 6-2
 Birmingham MPO ... 6-3
 Calhoun Area MPO ... 6-4
 Columbus-Phenix City Area MPO ... 6-5
 Decatur MPO .. 6-6
 Gadsden-Etowah MPO ... 6-8
 Huntsville Area MPO .. 6-9
 Mobile Area MPO .. 6-10
 Montgomery Area MPO ... 6-12
 Shoals Area MPO .. 6-14
 Southeast Wiregrass Area MPO ... 6-16
 Tuscaloosa MPO ... 6-18
 Florida-Alabama TPO .. 6-20
 Appendix B – SWTP Advisory Committee Membership 6-21
LIST OF FIGURES

Figure 1.1 SWTP / STIP Process Flow Chart... 1-3
Figure 1.2 Planning Areas and MPO Boundaries... 1-8
Figure 1.3 2005-2035 Population Change by Traffic Analysis Zone (TAZ).............. 1-9
Figure 1.4 2005-2035 Employment Change by Traffic Analysis Zone (TAZ)......... 1-10
Figure 2.1 Intermodal Facilities and Corridors... 2-2
Figure 2.2 Alabama Highway System .. 2-5
Figure 2.3 2005 Congested Roadways .. 2-8
Figure 2.4 2035 E+C Congested Roadways ... 2-9
Figure 2.5 2005 Daily Freight Volume .. 2-12
Figure 2.6 2035 E+C Daily Freight Volume ... 2-13
Figure 2.7 2006 ALDOT Pavement Rating ... 2-16
Figure 2.8 Hurricane Evacuation Routes .. 2-19
Figure 2.9 2007 Bridge Sufficiency Rating ... 2-23
Figure 2.10 Bridges 50 Years Old or Older by Year 2035 ... 2-25
Figure 2.11 Planning Area #1 – Environmental Justice Areas 2-28
Figure 2.12 Planning Area #2 – Environmental Justice Areas 2-30
Figure 2.13 Planning Area #3 – Environmental Justice Areas 2-32
Figure 2.14 Planning Area #4 – Environmental Justice Areas 2-33
Figure 2.15 Current Rural and Urban Transit Systems ... 2-38
Figure 2.16 Navicable Waterways and Dock Facilities ... 2-47
Figure 2.17 Railroad Facilities ... 2-50
Figure 2.18 Alabama Airports .. 2-51
Figure 3.1 Key Economic Corridors ... 3-2
Figure 3.2 Economic Growth Along HPC 7 ... 3-4
Figure 3.3 State Parks and Federal Lands ... 3-8
LIST OF TABLES

Table 1.1 Alabama Metropolitan Planning Organizations .. 1-5
Table 1.2 RPCs in Alabama.. 1-6
Table 1.3 Stakeholder Advisory and Public Meetings... 1-14
Table 1.4 Goals and Measures of Condition .. 1-17
Table 1.5 Measures of Conditions and Thresholds .. 1-17
Table 2.1 Roadway Characteristics by Functional Classification (2035) 2-6
Table 2.2 2035 Congestion ... 2-7
Table 2.3 Truck Traffic ... 2-11
Table 2.4 Pavement Rating for Interstates and Non-Interstate Facilities 2-17
Table 2.5 Bridge Sufficiency Rating .. 2-22
Table 2.6 Bridge Age ... 2-24
Table 2.7 Bridges Reaching 50-Year Lifespan Within the Next 10 Years 2-24
Table 2.8 Bridges Reaching 50-Year Lifespan Within the Study Period 2-26
Table 2.9 Operational Characteristics of Roadway Network – Planning Area 1 2-27
Table 2.10 Bridge and Pavement Needs – Planning Area 1 ... 2-27
Table 2.11 Operational Characteristics of Roadway Network – Planning Area 2 2-29
Table 2.12 Bridge and Pavement Needs – Planning Area 2 ... 2-29
Table 2.13 Operational Characteristics of Roadway Network – Planning Area 3 2-31
Table 2.14 Bridge and Pavement Needs – Planning Area 3 ... 2-31
Table 2.15 Operational Characteristics of Roadway Network – Planning Area 4 2-34
Table 2.16 Bridge and Pavement Needs – Planning Area 4 ... 2-34
Table 2.17 Transit Characteristics ... 2-35
Table 2.18 Safe Routes to School Apportionments (2005-2009) .. 2-44
Table 2.19 Inland Docks, Locations, and Acreage ... 2-45
Table 3.1 High Priority Corridor 6 ... 3-3
Table 3.2 High Priority Corridor 7 ... 3-4
Table 3.3 High Priority Corridor 10 .. 3-5
Table 3.4 High Priority Corridor 11 .. 3-6
Table 3.5 El Camino Real .. 3-7
Table 4.1 ALDOT Funding Sources (1997-2006) ... 4-2
Table 4.2 ALDOT Expenditures (1997-2006) ... 4-2
Table 4.3 SAFETEA-LU Apportionments (FY2007) ... 4-4
Table 4.4 Federal Aid Roadway and Bridge Funding Estimates (2007-2035) 4-5
Table 4.5 FY2007 Section 5307 Apportionments ... 4-6
Table 4.6 FY2007 Additional FTA Funding Sources .. 4-7
Table 4.7 Estimated System Needs Through 2035 .. 4-10
EXECUTIVE SUMMARY

The Alabama Statewide Transportation Plan (SWTP) presents long range multimodal assessments of the state’s transportation program. Long range transportation plans have been part of the Alabama Department of Transportation (ALDOT) process for many years. Federal regulations guide development of the SWTP and require that it address transportation needs for a minimum of 20 years into the future; this update has a plan horizon year of 2035.

The SWTP update took a different approach than previously. The emphasis in SAFETEA-LU (Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users), current federal regulations for transportation planning, on system operations measures and development of quantifiable outcomes, together with the Department’s need for planning tools to analyze current and anticipated statewide travel, led to the decision to develop a travel demand model as part of the SWTP update. The results of the travel demand model, supplemented with other planning analysis, provided a more detailed assessment of current and future transportation conditions. An important part of the travel demand model was truck freight information, provided by the University of Alabama at Huntsville (UAH) freight model. This enhancement was invaluable in addressing freight transportation needs.

Another hallmark of the current SWTP update was the level of coordination with Metropolitan and Regional Planning Organizations (MPOs and RPOs). These agencies participated throughout the study, from data collection and development to technical analysis to public outreach and review of results. Their meaningful involvement contributed to a comprehensive assessment of transportation needs statewide that was also sensitive to local transportation issues and concerns.

Public outreach relied heavily on an active Stakeholder Advisory Group (SAG) to better reach out and involve communities, local governments and state agencies, and special interests including economic development, environmental, and minority groups statewide. The public involvement effort also took advantage of the Department’s web site to inform the public of the study’s progress and upcoming meetings. Three rounds of public meetings were held in four different areas of the state, both rural and urban, and at locations accessible to the disabled. Meeting announcements included press releases, postcards to a list of over 1,000 contacts, notices posted to the web and coordination with stakeholder bulletins, newsletters and websites. Comments were documented and posted to the web site. A special e-mail address was established by ALDOT to receive public comments about state programs, projects and local concerns. Taken together, the public involvement process created opportunities for dialogue and information sharing.

The SWTP update addressed all modes of transportation for which ALDOT has direct responsibility or participates cooperatively to support other local and state government agencies. The following summarizes major findings by transportation mode.

Roads and Bridges

- Population and job growth will result in increased vehicle miles of travel (VMT) by 2035, including a statewide VMT increase of 32 percent. Congestion will also be more widespread, with 1,800 of the State system’s 11,000 miles, or 17 percent, operating in congested conditions. Travel demand model results indicate that congestion will be more pronounced in urban areas, and that the impact of congestion will be most apparent on the Interstates, both rural and urban. Truck traffic will represent an increasingly large component of Interstate traffic.
Pavement condition will continue to be a challenge for the state’s maintenance program. Current State databases (HYDRA) show that more than 2,666 miles of roadway (24 percent of total miles) are at or below the state’s threshold for resurfacing. The maintenance program will need to be aggressively pursued in order to keep up with pavement needs.

Bridges are aging. Almost half of the State’s bridges will be 50 or more years of age or have a sufficiency rating that requires improvements. Approximately 2,900 of the 5,900 bridges in the State system will be included.

Safety is a priority for the State’s programs. The Comprehensive Highway Safety Plan for Alabama outlines a strategy with five emphasis areas and an Action Plan for implementation. These areas were developed from safety analysis and include: 1) emergency medical services (EMS), 2) legislation supportive of safety measures, 3) older or at-risk drivers, 4) risky driving and 5) run-off-road crashes.

Transit

Transit buses in Alabama are expected to be even more important as the state’s population ages and the cost of fuel increases over time. Alabama’s 13 urban area transit systems and the numerous rural systems are an important mobility function, providing access and helping with congestion mitigation.

Bicycle and Pedestrian Systems

ALDOT has initiated development of the Statewide Bicycle and Pedestrian Plan. The plan will outline a program for efforts to improve bicycle and pedestrian access and enhance multimodal mobility.

The Safe Routes to School program is underway with significant interest from school systems statewide. The program, in its initial stages, will address improvement of sidewalk and bike path facilities as well as safety education for cyclists and pedestrians.

Freight Transportation Systems

The road and bridge system provide the backbone for freight system operations and connectivity. ALDOT works with the Alabama State Ports Authority, Port of Mobile, railroads and trucking operators statewide to support freight movements. Intermodal transportation demand will increase as new businesses locate in Alabama and existing businesses expand and develop.

Alabama’s High Priority Corridors, identified in federal legislation, are important to the state’s freight movements and economic development initiatives. Development of these corridors will be an important focus for the state into the future.

Aviation

Airports are important to Alabama passenger and freight movements. The State Airport System Plan identifies needed projects and includes planned expansions for airports in several cities, including Birmingham and Huntsville. Once completed, these projects will have a major impact on system capacity.
Alabama Statewide Transportation Plan Update

Security

- Federal legislation has re-emphasized the importance of safety and security in the transportation program. Already an area of emphasis for ALDOT, participation with the State Department of Homeland Security and Alabama Emergency Management Agency has emphasized maintaining routes that may be used for evacuation of the coastal areas. The evacuation network consists of all types of roadways providing routes for safe and efficient movement of communities from the coastal areas to interior parts of the State.

Environment

- ALDOT carries out an important role with respect to environmental reviews. The Department has received two FHWA awards for Eco System Approach to Wetland Banking. The Department is involved in conducting environmental reviews that follow federal standards. These standards address air quality, water quality, wildlife, cultural and historic resources. In addition, the Department reviews the potential of transportation impacts on environmental justice communities.

Funding

- Funding will be a major challenge for the state transportation program over the next two decades. Traditional funding sources – federal and state gas taxes – are not able to keep pace with demands. The transportation program has been impacted by the increased cost of construction as well as by the increase in hybrid vehicles and use of alternative fuels. This trend is expected to continue in the future. ALDOT along with other transportation program stakeholders must address the uneven balance between transportation funding and the needs of the transportation program. Options that may be considered by ALDOT include public / private initiatives and possible toll facilities. These options have the potential for funding select needed improvements.

Stakeholders and the public communicated the importance of the State’s transportation program to their personal mobility and their community’s economic well being. Participants recognized the challenges to the transportation program and the importance of developing solutions. Transportation improvements are usually a long term undertaking, requiring planning, engineering, environmental assessments and funding – all of which can take a long time to accomplish. Alabama’s SWTP provides guidance in identifying the transportation improvements that will meet the State’s strategic goals and the expectations of the many system users.
1. INTRODUCTION AND BACKGROUND

The Statewide Transportation Planning Process

Statewide transportation plans consider a range of transportation options designed to meet the transportation needs of both passenger and freight movements, including all modes and their connections. The Alabama Statewide Transportation Plan (SWTP) has been developed in cooperation and coordination with regional and metropolitan transportation planning efforts, resulting in a comprehensive assessment of the state’s transportation needs. The plan’s focus is long range – at least 20 years into the future – to anticipate the state’s transportation needs.

The objective of the statewide planning effort is two-fold:

1. review the current transportation program and evaluate how well it addresses the changing needs of the state’s transportation consumers today, and
2. use information about current conditions and projected population and employment forecasts to anticipate future transportation demands.

The plan’s recommendations are targeted to preparing the transportation program to meet future demands. The SWTP provides policy guidance for selection of improvements in the Statewide Transportation Improvement Program (STIP). The STIP has a four-year horizon and serves to program federal and state funds for projects. The SWTP does not identify projects; recommendations instead focus on transportation programs and policies. The relationship between the SWTP and the STIP is shown in Figure 1.1.

Development of the SWTP requires balancing technical analysis with public input. The technical analysis is grounded in review of current data and assessment of current operations and conditions. It also relies on a comprehensive review of plans, reports and program documents developed by other academic, policy and planning organizations to address a broad range of transportation programs and their relationship to key state priorities, such as economic development and environmental quality.

Long range transportation plans have been part of the Alabama Department of Transportation (ALDOT) process for many years. The statewide transportation plan was made a federal requirement in the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). Alabama's previous statewide transportation plan, developed in 2000, conformed with guidelines established in the Transportation Equity Act for the 21st Century (TEA-21), which built upon its ground-breaking predecessor, ISTEA. Federal legislation identified the following factors for consideration as part of plan development and recommendations:

- Support the economic vitality of the United States, the States and metropolitan areas, especially by enabling global competitiveness, productivity, and efficiency.
- Increase the safety and security of the transportation system for motorized and non-motorized users.
- Increase the accessibility and mobility options available to people and freight.
- Promote and enhance the environment, promote energy conservation and improve quality of life.
Alabama Statewide Transportation Plan Update

- Enhance the integration and connectivity of the transportation system, across and between modes, for people and freight.
- Promote efficient system management and operation.
- Emphasize the preservation of the existing transportation system.
Figure 1.1 SWTP / STIP Process Flow Chart

SWTP

Existing Facilities
- Highways and Bridges
- Public Transit
- Railroads
- Aviation
- Ports & Waterways
- Bicycle & Pedestrian Facilities

Goals
Objectives
Strategies & Actions

Statewide Travel Demand Model
Operating Data
Characteristics
Existing & Future Needs

Funding Sources
Financial Analyses

STIP

Project Selection & Prioritization
Programming & Implementation

Planned Growth & Development
Resource Distribution
Other Needs
MPO Plans & Programs
Other Agency Plans

Existing Facilities

Aviation
Ports & Waterways
Bicycle & Pedestrian Facilities

Characteristics

Existing & Future Needs

Goals
Objectives
Strategies & Actions

Funding Sources
Financial Analyses
The most recent reauthorization of the federal transportation act resulted in the August 2005 passage of SAFETEA-LU (Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users). Federal regulations were updated to address new requirements in the Act. The Statewide Transportation Planning: Final Rule was effective March 2007; statewide transportation plans developed after July 1, 2007, are required to comply. Implications for the current ALDOT SWTP update effort are that it should:

- Emphasize safety and security planning.
- Emphasize coordination and consultation with tribal governments, non-metropolitan officials, local agencies for land use management, natural resources and environmental conservation and preservation.
- Emphasize use of visualization for communications with the public – the use of the web is encouraged.
- Outreach to disabled populations and to bike and pedestrian non motorized transportation users.
- Emphasize congestion mitigation and more efficient use of the existing infrastructure.

The Alabama SWTP Update takes into account the SAFETEA-LU requirements. Special attention has been given to transportation safety and security in the plan’s development. The public involvement process was reviewed and updated to emphasize coordination with non-metropolitan officials including a Stakeholder Advisory Group, which is composed of a broad cross section of diverse communities including tribal governments and other groups identified in SAFETEA-LU. Visualization has been emphasized, with special attention paid to graphics, maps and other visual means of presenting information, and a web site has been established. The efficient movement of travel continues to be a main goal of the plan and supports the SAFETEA-LU emphasis on congestion mitigation and efficient use of transportation resources.

Approach to Current Plan

The SWTP update incorporated a cooperative approach to the plan’s development involving the state’s planning community in urban and rural areas as well as key stakeholder groups. Building on the traditional role of the Metropolitan Planning Organizations (MPOs) and Regional Planning Organizations (RPOs), the SWTP update effort has relied on these organizations for assistance in gathering and reviewing data, facilitating public involvement activities and providing critical linkage to the public and local communities statewide. In addition, ALDOT established an active working group of key stakeholders to assist with previewing findings, supporting public outreach and advising the plan effort about local priorities and perspectives.

The study’s organization framework assigned responsibilities for study management, data gathering and reviews, and public outreach to a committee system of planning partners throughout the state. Five committees were established to oversee progress and provide guidance, direction and input throughout the plan update process. The role of these committees is discussed further in the public involvement chapter. The committee composition facilitated coordination with local “grassroots” transportation priorities and concerns.
The Role of the MPOs and RPOs / RPCs in Transportation Planning

Metropolitan Planning Organizations

In response to the birth of the Interstate Highway System and the planning and construction of highway facilities through states and major cities, the Federal-Aid Highway Act of 1962 created the federal requirement for urban transportation planning. As a condition attached to federal transportation financial assistance, specified in the United States Code Section 134, Title 23, the Act required that MPOs (Metropolitan Planning Organizations) be designated in urban areas with a population exceeding 50,000 individuals and that transportation projects within the MPO be based on a “continuing, comprehensive and cooperative planning process” undertaken by the states and local governments.

MPOs utilize a committee structure, with each committee having a specific role in the planning process. The Technical Coordinating Committee (TCC) provides technical guidance for the planning process and consists of planners, project engineers, transit staff and others as appropriate. The Citizens Advisory Committee (CAC) advises the MPO staff with input from a citizen’s perspective on plans, programs and projects. The Policy Committee is made up of the area’s leadership, including elected officials, DOT and Federal Highway Administration/Federal Transit Administration (FHWA/FTA) members. FHWA and FTA are typically non-voting members of the Policy Committee. The Policy Committee has authority to approve the Long Range Transportation Plan (LRTP) and Transportation Improvement Program (TIP). The 13 MPOs representing metropolitan areas wholly or partially within Alabama are listed in Table 1.1 below. Detailed profiles of each MPO are provided in Appendix A.

Table 1.1 Alabama Metropolitan Planning Organizations

<table>
<thead>
<tr>
<th>MPO Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auburn-Opelika MPO</td>
</tr>
<tr>
<td>Birmingham MPO</td>
</tr>
<tr>
<td>Calhoun Area MPO</td>
</tr>
<tr>
<td>Columbus-Phenix City MPO</td>
</tr>
<tr>
<td>Decatur MPO</td>
</tr>
<tr>
<td>Gadsden-Etowah MPO</td>
</tr>
<tr>
<td>Huntsville Area MPO</td>
</tr>
<tr>
<td>Mobile Area MPO</td>
</tr>
<tr>
<td>Montgomery Area MPO</td>
</tr>
<tr>
<td>Shoals Area MPO</td>
</tr>
<tr>
<td>Southeast Wiregrass Area MPO</td>
</tr>
<tr>
<td>Tuscaloosa Area MPO</td>
</tr>
<tr>
<td>Florida-Alabama TPO</td>
</tr>
</tbody>
</table>

MPOs had an important role in updating the SWTP. Development of the statewide travel demand model utilized local urban area transportation demand models as the base. Working closely with the MPOs, the SWTP work effort benefited from local reviews that ensured the SWTP would be coordinated with local planning initiatives. The MPOs also played an important role in public outreach, keeping their local committee membership informed of the SWTP progress, as well as encouraging participation in public meetings, accessing materials on the web site and responding to inquiries about the SWTP.
Rural Planning Organizations

ALDOT has funded Regional Planning Councils (RPCs) to serve as Rural Planning Organizations (RPOs). The RPOs provide a venue for public officials in rural areas to become involved in transportation planning, thereby offering input to ALDOT on transportation programs and projects. ALDOT consults with the RPOs about transportation plans and programs including the STIP. The RPOs, in turn, assist rural communities to identify transportation needs and possible solutions.

RPO agencies use many different names, from regional planning and development commissions to councils of government to economic or local development districts. Regardless of the name, regional councils carry out similar functions and responsibilities. They are multi-jurisdictional and multi-purpose organizations with legal status, funded in whole or in part by member local governments. The governing bodies are primarily composed of local government elected officials and appointed representatives of local communities and state government.¹

RPCs look after the interests of their member communities, promote regional growth, and nurture community development. In this role they coordinate region-wide projects and services and implement state and federal programs on a regional basis. RPCs generally cover large areas and may encompass MPO boundaries. RPCs provide access to a wide breadth of planning and advisory services related to social welfare issues, land use plans, environmental assessments and transportation planning efforts. Table 1.2 below lists the RPCs found in Alabama.

<table>
<thead>
<tr>
<th>Name of Regional Planning Commission</th>
<th>MPO</th>
<th>RPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Alabama Regional Planning and Development Commission</td>
<td>Yes (Anniston)</td>
<td>Yes</td>
</tr>
<tr>
<td>Auburn-Opelika / Lee- Russell County Council of Governments</td>
<td>Yes (Auburn/Opelika)</td>
<td>Yes</td>
</tr>
<tr>
<td>Regional Planning Commission of Greater Birmingham</td>
<td>Yes (Birmingham)</td>
<td>Yes</td>
</tr>
<tr>
<td>Top of Alabama Regional Council of Governments</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>North Central Alabama Regional Council of Governments</td>
<td>Yes (Decatur)</td>
<td>Yes</td>
</tr>
<tr>
<td>Northwest Alabama Council of Local Governments</td>
<td>Yes (Shoals)</td>
<td>Yes</td>
</tr>
<tr>
<td>South Alabama Regional Planning Commission</td>
<td>Yes (Mobile)</td>
<td>Yes</td>
</tr>
<tr>
<td>West Alabama Regional Commission</td>
<td>Yes (Tuscaloosa)</td>
<td>Yes</td>
</tr>
<tr>
<td>Central Alabama Regional Planning and Development Commission</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>South Central Alabama Development District</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Alabama-Tombigbee Regional Commission</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Southeast Alabama Planning and Development Commission</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

¹ Source: Alabama Association of Regional Councils.
Planning Areas

Alabama is a geographically large and diverse state. Geographical, economic and cultural differences set various sections of the state apart from others. The mountainous region located in the north greatly differs from the flat, coastal land of south Alabama. Large cities such as Birmingham, Mobile, Montgomery and Huntsville are in stark contrast to the rural areas covering much of the state. These and other characteristics that make Alabama unique also affect future transportation needs throughout the state.

For the purpose of the study, the state was organized into four planning areas, as shown in Figure 1.2. Planning Area 1 consists of the northern portion of the state, while Planning Area 2 encompasses the central section. The southern half of the state is divided into Planning Area 3 (to the west) and Planning Area 4 (to the east). To better understand local needs, analyses were performed on a statewide basis as well as by planning area.

Statewide Travel Demand Model

An important element of the SWTP update entailed developing Alabama’s first statewide travel demand forecasting model. Travel demand models are mathematical tools that predict future travel demand based on current conditions and future projections of household and employment characteristics. Travel demand models are used mostly in larger urban areas to determine the benefits and impacts of major highway improvements. A statewide travel demand model can leverage the understanding of transportation dynamics gleaned from MPO models with input from rural areas to develop a more comprehensive, quantifiable evaluation of statewide travel demands.

Model development was a cooperative effort that involved the MPOs, the RPOs and the ALDOT Technical Modeling Team (TMT). The TMT served to organize the travel demand development process and establish the structure for coordination with internal and external study participants. The TMT was briefed at critical milestones in the model development process to review and comment on the approach, data and results to date, with any necessary changes incorporated. Coordination with the TMT, whose members include ALDOT Central Office staff involved with GIS and travel demand modeling as well as consultant staff, continued throughout the study.

Population and employment data for the base year 2005 and future year 2035 was obtained from sources including the U.S. Census, Census Transportation Planning Package (CTPP) 2000, University of Alabama (UA) data center, regional RPOs and MPOs, state agencies, and private industry and business organizations. Figures 1.3 and 1.4 illustrate the changes in population and employment as projected by these sources. The model platform is Tranplan with Cube interface. Traffic analysis zones (TAZs) were defined based on Census tracts, block groups, MPO TAZs and roadways. The analysis network, provided by ALDOT, is essentially limited to the State highway system, with some key existing or future local collectors also included.

Travel demand modeling follows a standard series of sequential steps to develop the existing conditions model, which serves as the base for future year models. Items developed in each step are as follows: (1) TAZ geography, (2) base year socioeconomic (SE) data, (3) model roadway network, (4) trip generation module, (5) trip distribution module, (6) traffic assignment module, and (7) base year model calibration and validation. Once the base year model accurately reflects existing conditions, future projected SE and traffic growth data is used to replace that for the base year. After the network is modified to reflect the
2005 - 2035 Population Change by Traffic Analysis Zone (TAZ)

Legend
2005 - 2035 Population Change
- > 500 People
- 251 - 500 People
- 101 - 250 People
- 51 - 100 People
- <= 50 People

Alabama Highway System
- Interstate Highway
- State or U.S. Highway

Other Features
- Planning Area Boundary
- County Boundary
- Lakes

Source: ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.

Figure 1.3

June 2008
Figure 1.4

2005 - 2035 Employment Change by Traffic Analysis Zone (TAZ)

Legend

<table>
<thead>
<tr>
<th>Employment Change</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 500 New Jobs</td>
<td>Orange</td>
</tr>
<tr>
<td>251 - 500 People</td>
<td>Brown</td>
</tr>
<tr>
<td>101 - 250 People</td>
<td>Beige</td>
</tr>
<tr>
<td>51 - 100 People</td>
<td>Light Beige</td>
</tr>
<tr>
<td><= 50 People</td>
<td>White</td>
</tr>
</tbody>
</table>

Alabama Highway System
- Interstate Highway
- State or U.S. Highway

Other Features
- Planning Area Boundary
- County Boundary
- Lakes

Source: ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.

June 2008
E+C program\(^2\) of projects, the model is run again to determine traffic conditions under the E+C. The final step, still utilizing the future projected SE and traffic growth data from the E+C future model, involves the new program of projects and conducting the new “build” model run to determine how well the new program of projects addresses anticipated traffic congestion.

The Alabama statewide travel demand model provided a picture of base year (2005) and future year (2035) travel conditions. The model projected 2035 traffic volumes, miles and hours of travel, and levels of congestion. Measures of Condition (MOC) calculations used model output to develop metrics indicative of system operations. The model analysis was done statewide and for the four planning areas separately. The analysis by planning areas included in later in Chapter 2 relied on a combination of model and off-model analysis tools.

The effort to build a travel demand model refined historic growth extrapolations performed in the 2003 System Performance Review Report to facilitate travel projections and system utilization analyses more reflective of local/regional/state growth levels and distribution. The travel demand model simulated current and future travel patterns and travel demand for purpose of the SWTP update analysis. As an analysis tool, the model will continue to be used by the Department for examination of traffic and demand projections for potential roadway improvement projects. Further details about the statewide travel demand model are included in the Existing Conditions Report developed for the SWTP update.

Statewide Transportation Freight Movement Model Coordination

The freight component of the travel demand model was developed in cooperation with the University of Alabama at Huntsville (UAH). The consultant team met with the UAH researchers and discussed the University’s freight movement modeling project, which is still in development and continues to be refined by the University’s team. After receiving the freight model results from UAH and undertaking a thorough review of its methodology, the information was used along with ALDOT traffic data to identify internal truck movements, understand freight movements in the state, and assess the impact of trucks on the system.

SWTP Public Involvement and Agency Coordination

Public Involvement Process Action Plan

Public involvement was an important part of updating the SWTP. At the beginning of the update, the Public Involvement Process Action Plan was revisited and changes made to reflect a strategy for proactive public consultation reaching out to a broad cross section of stakeholders, special interests and the public in general. The Action Plan relied on a committee based structure for the SWTP update. Five committees were established, each with a specific purpose and membership. Two of the committees included the Metropolitan Planning Organizations (MPOs) and Rural Planning Organizations (RPOs) from across the state. The MPOs and RPOs have grassroots connections with local communities and governmental entities based on their roles as key planning organizations for local transportation. Their participation in the SWTP committees provided a valuable link to the local transportation concerns and priorities.

\(^2\) E+C (Existing plus Committed) projects that are currently programmed in the STIP and for which right-of-way has been funded or purchased, or there is committed funding for construction.
The Action Plan built on the existing public involvement process program used by ALDOT for outreach in developing the STIP, continuing with a commitment to provide opportunity for input on transportation issues, needs and priorities. The Action Plan for the SWTP update also used the web extensively to establish a communications link with the public. SWTP progress was documented on a plan web page on the ALDOT home page, with a special e-mail address set up for SWTP communications. The SWTP site’s address and dedicated e-mail address were included in press releases, comment sheets, fact sheets and other public outreach materials. In addition, the public outreach materials included the name, address and phone number of an ALDOT contact person who could be reached to discuss the plan. Public input and comments were documented throughout the SWTP update period and updated postings were made to the web site on a regular basis.

The five committees were established at the start of the update to oversee progress and provide guidance, direction and input throughout the plan update process. Three of the committees – the Study Management Committee, Study Coordination Team and Technical Modeling Team – were internal to ALDOT, with membership from a cross section of ALDOT bureaus and divisions. The ALDOT committees facilitated access to data resources, information on current programs and reviews of study results. The two external committees included a Technical Advisory Committee and Stakeholder Advisory Group representing a broad array of interests, along with ALDOT representatives. A brief summary of the five committees, their roles and membership is provided below.

ALDOT Study Management Committee (SMC)

The SMC is the ALDOT project management team with responsibility for SWTP development and overseeing the work progress. The committee provided study guidance and facilitated coordination within the Department and with other stakeholders in the process. The SMC worked closely with the other committees including the Technical Advisory Committee and Stakeholder Advisory Group. SMC members included key ALDOT staff members, a designated FHWA representative, and consultant management team members.

ALDOT Study Coordination Team (SCT)

The SCT coordinated SWTP activities with the Department’s internal activities, thereby assuring the SWTP analysis had access to the most current data available and that it included Department initiatives and policy directions. Team members included key staff in the Department’s Central Office, Division Engineers, and representatives from the Safety, Transit and Environment sections, as well as others as designated by ALDOT. The role of the ALDOT Divisions was very important in this process – providing a critical linkage with the local MPOs and RPOs, assisting with public involvement and understanding local transportation issues.

ALDOT Technical Modeling Team (TMT)

The TMT focused on developing a statewide travel demand model and related data, GIS and analytical methods and procedures. Team members included ALDOT Central Office staff from the GIS and travel demand modeling areas, UAH staff and consultant technical staff. The statewide travel demand model was used for the update plan analysis and will also serve the Department’s needs in the future for projecting traffic on proposed improvements.
SWTP Technical Advisory Committee (TAC)

The TAC was essential in providing technical support with data collection, access to relevant studies and land use/comprehensive plans. The TAC commented on technical developments and results during the study. Committee members included MPO and RPO staffs, ALDOT Division Engineers, and representatives from other state agencies such as the Department of Environmental Management, Governor’s Office on Disabilities and others.

As members of both the TAC and internal SCT, ALDOT Division Engineers facilitated coordination between the two committees and the consultant team. Continuously in contact with the MPOs and RPOs, the Division representatives encouraged dialogue and identification of local transportation problems with SWTP implications. The TAC met frequently due to their active role in SWTP development. The RPOs and MPOs coordinated with local constituents on the SWTP and reported comments. In this role, the committee was critical to a successful public outreach effort.

SWTP Stakeholder Advisory Group (SAG)

The SAG was formed by invitation of the ALDOT Director and included key transportation stakeholders such as transportation users and special interest groups interested in the development of the SWTP. Most notably, the SAG participated in needs identification and provided feedback on findings and recommendations. Committee members were selected after consultation with MPOs and RPOs. The group numbered over 100 representatives from a broad cross section of Alabama communities, including planning organizations, state agencies representing environmental development and conservation, modal representatives from transit, trucking, ports, airports, bicycle and pedestrian groups, environmental groups, Indian Tribes, economic development interests and environmental justice groups. Special emphasis was placed on including stakeholders with diverse transportation concerns, especially groups or individuals representing the traditionally under-served such as disabled, elderly, minority, economically disadvantaged and Indian Tribe communities.

The draft Public Involvement Process Action Plan was sent to members of the SAG for comment and was also discussed in the group’s first meeting. Additionally, the draft was posted on the web to solicit public comment. The only comment was offered by a group asking about a Speaker’s Bureau. With that option clarified in the Action Plan, the outreach strategy for public outreach was put in place.

Stakeholder Advisory Group and Public Meetings

Meetings with the SAG were very important to understanding the perspectives of special interests, particularly given its diverse membership. The SAG met prior to each public meeting to review study progress and provide comments. They were especially helpful with including public meeting notices within their newsletters and web sites and announcing upcoming meetings at gatherings. The efforts of the SAG generated a lot of interest in the public meetings and helped raise awareness for the SWTP update across the state.

Public meetings were held in different locations of Alabama. The four geographic planning areas described previously were also used to enhance outreach efforts. The development of planning areas provided more individual attention within the context of statewide analysis. Identified with assistance from ALDOT, the areas each exhibited similar geographic and socio-economic characteristics. There is more discussion about the planning areas in following chapters of the plan, particularly in the analysis sections.
Public involvement outreach meetings were held in each of the planning areas during each of the three rounds of public involvement scheduled throughout the update.

With assistance from the SAG, MPOs, RPOs and ALDOT Division Offices, a comprehensive list of public and media contacts was developed and used for each public meeting. The media was sent a press release approximately one month prior to the public meeting, with a reminder follow-up press release a week prior to the meeting. Postcards were mailed to the public with meeting dates, times and locations. The contact list grew over the period of SWTP development, with over 1000 postcards sent for the final meeting. The public outreach effort resulted in a stream of comments to the web site and e-mails to the study team. The comments, observations and suggestions were documented and posted on the web site.

Table 1.3 outlines the dates and purpose for each SAG and public involvement meeting. The details of the meetings, including fact sheets, presentations, comment forms, maps and graphics, are detailed in a separate notebook provided to ALDOT.

<table>
<thead>
<tr>
<th>Date</th>
<th>Meeting</th>
<th>Topic</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 22, 2007</td>
<td>Stakeholder Advisory Group</td>
<td>SWTP Update Initiation</td>
<td>Review public involvement process Review goals Market public outreach meeting</td>
</tr>
<tr>
<td>July 10 & 12 2007</td>
<td>Public Outreach Meeting</td>
<td>SWTP Update Initiation</td>
<td>Review goals Identify perceived needs Market SWTP web site Receive comments</td>
</tr>
<tr>
<td>October 16, 2007</td>
<td>Stakeholder Advisory Group</td>
<td>Current & Future Transportation Needs</td>
<td>Review identified needs Comments about transportation priorities</td>
</tr>
<tr>
<td>November 6 & 8 2007</td>
<td>Public Outreach Meeting</td>
<td>Current & Future Transportation Needs</td>
<td>Comments on identified needs Comments about transportation priorities</td>
</tr>
<tr>
<td>January 28, 2008</td>
<td>Stakeholder Advisory Group</td>
<td>Draft SWTP / Recommendations</td>
<td>Comments about the Plan and recommendations</td>
</tr>
<tr>
<td>February 4 & 7 2008</td>
<td>Public Outreach Meeting</td>
<td>Draft SWTP / Recommendations</td>
<td>Comments about the Plan and recommendations</td>
</tr>
</tbody>
</table>
Stakeholder and Public Outreach Results

The results of the stakeholder and public outreach process generated comments about transportation needs, transportation priorities, modal priorities, funding, economic development and freight transportation. A summary of comments is included in the public involvement notebook companion to the SWTP report. Public input received, both written and verbal, were captured in meeting notes as well as in comment forms. These were reviewed in developing recommendations for the SWTP.

In general, comments from the SAG and public outreach meetings expressed an interest in maintenance and system preservation of the current transportation systems, especially as it pertains to roads and bridges. Congestion was an issue both in rural and urban areas, with comments reflecting the individual’s singular perspective. In rural areas, congestion seemed to be related to truck traffic movements on rural roads; in urban areas the cause for congestion was broader based. Funding was recognized as a challenge. There appeared to be an understanding that funding is not sufficient for ALDOT to address all of the needs of a rapidly growing state. The public did not have a solution to the problem of funding shortfalls, although one person felt strongly that the gasoline tax needed to be revisited. Rural areas commented that they are at a disadvantage without adequate resources to maintain local roads. There was strong agreement that transportation should support economic development and facilitate growing Alabama businesses and jobs. Safety was important in both rural and urban areas. Improving the safety of the transportation system was repeated at every meeting by every group.

Transit in both rural and urban areas was also brought up repeatedly. The types of transit that stakeholders and the public would like to see included more rural and urban transit, commuter rail, senior transit, commuter transit and more. The public identified the lack of transit funding as a problem for the state’s transportation program. Along with transit, bicycle and pedestrian programs received a number of comments, generally favorable. Interest in bicycle facilities, for recreation and for transportation, was expressed at public meetings.

The public and stakeholders raised the issue of equity. Several comments were directed at geographic distribution of the available funds, with some areas feeling they are not receiving an equitable share of a limited budget. Many in rural areas expressed concern about this topic. The value of public/private partnerships in funding transportation improvements was recognized by many and felt to be an avenue that should be explored further.

Land use and access management were also raised as a concern. Increasing the efficiency of transportation was important to those linking congestion to land use and access management. Connectivity and access to key activity locations was also repeated throughout the study process. Several comments addressed corridors in the state that provide important mobility access between industrial centers and the Port of Mobile and other Intermodal facilities. Improvements of freight corridors were closely linked to economic development and efficiency of freight movements.

Responses to the outreach efforts of the SWTP update effort generated a rich source of comments, ideas and concerns about the state’s transportation program. The public was well aware of the importance of transportation to achieving goals for economic development, access to education and services, and enhanced quality of life in Alabama.
SWTP Update Goals and Measures of Condition

Transportation goals guide the study process by providing a structured target for evaluating conditions and deciding on appropriate programs and policy recommendations that drive toward achieving the desired aim. It is important that the current update of the SWTP have continuity with previous plans; therefore, the goals from the 2000 ALDOT SWTP were reviewed with the SAG (Stakeholder Advisory Group) as well as the public during the first round of public meetings held in August 2007. Comments from those meetings supported continuation of the same goals into the current update. ALDOT encouraged discussion on the transportation plan goals throughout the process.

The four primary goals identified for the SWTP update are:

- Provide safe and efficient transportation for people and goods.
- Protect the public and private investment in transportation.
- Provide an interconnected transportation system that supports economic development objectives.
- Provide a transportation system that preserves the quality of the environment and enhances the quality of life.

Measures of condition are indicators of system transportation operations, which is an important part of assessing progress toward achieving predetermined goals. Measures of condition have many functions and can be used to:

- Frame what attributes of the transportation system are most important.
- Provide information on current conditions and trends.
- Evaluate the success of implemented and ongoing projects.
- Provide a metric for communicating with decision makers and to the public about past, current and expected future conditions.
- Serve as criteria for investment decisions in the transportation planning process.

In developing the methodology for evaluating transportation needs, measures of condition were used to identify how well the transportation system functioned in relation to specific goals. Relating measures of condition to goals provides a metric to measure how well the transportation network is functioning and achieving the related goal. Not all measures are quantitative; they can also be qualitative. The measures of condition for the SWTP study addressed different modes and were mostly quantitative, derived from technical analysis of the system operations and from results of the statewide travel demand model. SAFETEA-LU places special emphasis on resolving problems related to congestion, and the SWTP paid close attention to measures related to vehicle hours of travel, total number of hours of delay and other congestion indicators. Table 1.4 shows the goals and related measures of condition applied in the analysis of the transportation system; the measures relate to all modes.

Table 1.4 Goals and Measures of Condition

<table>
<thead>
<tr>
<th>Goals</th>
<th>Measures of Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide safe and efficient transportation for people and goods</td>
<td>Average congested roadway speed</td>
</tr>
<tr>
<td></td>
<td>Average travel time</td>
</tr>
<tr>
<td></td>
<td>Monitored crash rates (CARE data)</td>
</tr>
<tr>
<td></td>
<td>Truck traffic volumes</td>
</tr>
<tr>
<td>Protect the public and private investment in transportation</td>
<td>HYDRA condition of pavement</td>
</tr>
<tr>
<td></td>
<td>Age of transit buses(^4)</td>
</tr>
<tr>
<td></td>
<td>Bridge rating reviews</td>
</tr>
<tr>
<td>Provide an interconnected transportation system that supports</td>
<td>Per capita vehicle miles traveled (VMT)</td>
</tr>
<tr>
<td>economic development objectives</td>
<td>Per capita vehicle hours traveled (VHT)</td>
</tr>
<tr>
<td></td>
<td>Peak period volume to capacity (v/c) ratio</td>
</tr>
<tr>
<td></td>
<td>Average congested roadway speed</td>
</tr>
<tr>
<td></td>
<td>Average travel time (urban/rural)</td>
</tr>
<tr>
<td>Provide a transportation system that preserves the quality of the</td>
<td>Wetland banks for mitigation</td>
</tr>
<tr>
<td>environment and enhances the quality of life</td>
<td>Miles of sidewalks/bike trails(^5)</td>
</tr>
<tr>
<td></td>
<td>Highway Beautification programs</td>
</tr>
</tbody>
</table>

The measures of condition are part of the analytical portion of the study, which drives technical evaluations of transportation network operations. The technical analysis results are considered in light of public input, stakeholder comments and feedback from MPO/RPO planning activities.

Specific measures of condition (MOC) were developed for the study to address four categories: capacity, safety, bridges and pavement. The conditions and their recommended thresholds are shown in Table 1.5.

Table 1.5 Measures of Conditions and Thresholds

<table>
<thead>
<tr>
<th>Measures of Condition</th>
<th>Recommended Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (Existing and Future Congestion)</td>
<td>Acceptable volume to capacity (v/c) ratio</td>
</tr>
<tr>
<td></td>
<td>Rural = less than 0.75 (LOS C or better)</td>
</tr>
<tr>
<td></td>
<td>Urban = less than 0.90 (LOS D or better)</td>
</tr>
<tr>
<td>Safety (Crash and Fatality Rates)</td>
<td>Crash and fatality rates per 100 Million Vehicle Miles</td>
</tr>
<tr>
<td></td>
<td>Traveled (VMT)</td>
</tr>
<tr>
<td></td>
<td>computed for all public roads</td>
</tr>
<tr>
<td></td>
<td>Routes with normalized rates one standard deviation above</td>
</tr>
<tr>
<td></td>
<td>the study system average identified for future consideration(^6)</td>
</tr>
<tr>
<td>Bridge (Sufficiency Rating(^7) and Bridge Age)</td>
<td>Replace bridges with a sufficiency rating of below 50</td>
</tr>
<tr>
<td></td>
<td>Age of the bridge (50 years+)</td>
</tr>
</tbody>
</table>

\(^4\) The State of Alabama uses SMART (Specific, Measurable, Accountable, Responsive, Transparent) budgeting as part of performance management system that coordinates the budgets of the State Departments with the Governor’s Strategic Plan. Age of transit buses is one of the performance measures used by SMART budgets and reported quarterly to the Governor.

\(^5\) Bike trails in this context include on-road and off-road facilities.

\(^6\) This same performance metric is used in the SMART budgeting and performance reports.
Measures of Condition	Recommended Thresholds

Pavement (Condition, Shoulders and Type) Roadway with an ALDOT pavement rating of marginal or below should be labeled as deficient
Right shoulder less than 10 feet
Left shoulder less than 4 ft for 4-lane section (less than 10 ft for 6-lane section)

Analysis of transportation system operations considered current and future conditions. Current conditions reflect 2005 operating statistics for all modes of the transportation network. Where more current information was available, the more current data was used. The SWTP update horizon year for future projections is 2035. This time frame allows for a 20-year horizon, as required in federal regulations for development of statewide transportation plans.

7 Sufficiency rating is based on a compilation of factors including 1) Structural Adequacy and Safety, 2) Serviceability and Functional Obsolescence, and 3) Essentiality for Public Use. ALDOT maintains and updates on a regular basis the bridge inventory and along with their calculated sufficiency rating.

8 Right shoulders of less than 10 feet would be a threshold for rural arterial facilities. Shoulders widths are considered in context of the facility location and adjacent development, design speed, volume of traffic, terrain and other factors.
2. **TRANSPORTATION SYSTEM OVERVIEW AND ASSESSMENT**

The State of Alabama’s transportation system serves many needs, including commuting, the movement of freight and goods throughout the state, intercity and interstate business and personal travel, and recreational travel. The system includes roadway, transit, water, rail and air modes of travel, as well as their interconnections. Figure 2.1 illustrates the state’s Intermodal system. This chapter provides an overview of each major element of Alabama’s transportation system, key features of which include:

- 5 major Interstate highways and an extensive network of surface highways
- Public transportation services in most areas, including fixed route, fixed schedule service in urbanized areas
- 14 intercity bus stations offering passenger service across Alabama and the nation
- The nation’s 2nd longest inland waterway system and 11th busiest deep water port
- 5 Class I railroads typically serving freight movements within and between states
- 1 Amtrak passenger rail route in operation
- 92 public use aviation facilities, including 6 commercial airports
- 4 toll facilities – located in Montgomery, Orange Beach and Tuscaloosa
- Numerous Intermodal facilities serving the needs of passengers and freight

Approach and Methodology

The SWTP addresses all modes of transportation: roads and bridges, transit, bicycle and pedestrian facilities, and freight transportation. To meet the mobility challenges facing Alabama’s transportation system, a thorough, comprehensive analysis is required to identify deficiencies and potential solutions. Safety, traffic congestion, improving Intermodal connectivity and protecting the state’s rich environmental resources are important not only to mobility but also to supporting opportunities for economic development that will make Alabama a destination for new business. In addition, the SWTP will lay the groundwork for addressing future challenges from population and employment growth.

The Existing System Assessment report, published in November 2007, provides detailed description of the current condition of Alabama’s transportation network. This document details the physical and operational characteristics of the various modes of transportation.

The SWTP draws on the results of the Existing System Assessment to document transportation needs as determined through the analysis of current conditions and to recommend potential strategies and programs to improve the transportation network in response to anticipated future demands. Analyses and recommendations set forth through this report expand upon the data collection and documentation of existing conditions provided in the Existing System Assessment report.

In addition to the analysis of existing conditions, the SWTP projects needs to the study’s horizon year of 2035. The methodology used to conduct the assessment can be summarized in the following points:

- Assess current and future transportation needs and the resources necessary to meet those needs.
- Conduct comprehensive public involvement including numerous meetings throughout the state, an active web site, and ongoing consultation with local and state officials and stakeholders.
Intermodal Facilities & Corridors

Legend
- Bridge Toll
- Ferry Toll

Airport Types
- Commercial Aviation
- General Aviation

Bus / Amtrak Terminals & Port Docks
- Bus Stations / Amtrak Terminal
- Port Docks

Intermodal Facilities / Connectors*
- Intermodal Facility or Connector

State Roadway Network
- Interstate Highway
- State Route / U.S. Route

Other Features
- Planning Area Boundary
- Railroad Feature
- Urbanized Area
- Lakes

Note*
The intermodal facilities depicted on this map reflect the general locations of both intermodal facilities and intermodal connectors. Intermodal facilities represent port, airport, rail, and transfer capacities.

This data was provided by Alabama DOT, the Association of American Railroads, and FHWA.

June 2008
• Offer recommendations to improve upon areas of need and to ensure an efficient transportation system for Alabama’s future.

Analytical tools were developed and used to inventory current conditions, assess growth impacts, and forecast needs and resources. Tools developed included the following:

• Statewide travel demand model was developed using data collected statewide through a variety of sources including ALDOT, MPOs/RPOs and original data sources. The travel demand model offers the opportunity to measure the impact of growth on the statewide roadway network by incorporating future population, household and employment forecasts into a traffic generation and assignment calculation. The model results can also point to locations with a potential for transit service based on the socioeconomic characteristics of the area and other related factors.

• Geographic Information System (GIS) data collection and analysis, which was conducted working closely with ALDOT GIS staff. Specific sources of data included:
 - ALTRIS software, a creation of ALDOT staff that enabled the analysis of roadway characteristics data including traffic volume analysis for determining congestion needs (v/c ratios)
 - ABIMS (Alabama Bridge Information Management System) database, developed by ALDOT to provide data for bridge condition analysis to determine needs
 - HYDRA (pavement condition database), used to determine pavement maintenance needs
 - University of Alabama CARE (crash) data, used to perform an analysis by functional classification by county to identify segments and intersections to prioritize needs

• Ongoing public involvement including several rounds of statewide meetings conducted to collect input on existing and future transportation needs.

• Staff and stakeholder involvement, also ongoing, with several committees developed and meeting to oversee and provide input into the technical needs assessment process.

The SWTP needs assessment and final plan were developed based on the tools and methodology described above. Refinement of the process continued throughout plan development.

Roadway Conditions and Needs

Alabama’s highway network, which is the backbone of the transportation system, provides connectivity between modes and facilitates multimodal mobility. The network includes facilities at all functional classifications, from Interstate highways to neighborhood streets, and provides access and mobility to all populated areas of the state. In addition to serving much of Alabama’s long distance trip-making and freight movement activity outright, highways serve as collector and distributor facilities for other transportation modes. Alabama’s transportation system includes federal and state highways that respond to a majority of the state’s transportation demands.

National Highway System

The most current National Highway System (NHS) consists of a nationwide network of over 162,140 miles of interconnected urban and rural principal arterials and highways serving major population centers, international border crossings, ports, airports, public transportation facilities, other intermodal facilities and
major destinations. Alabama contains 3,956 miles of NHS roadways, as depicted in Figure 2.2. The NHS comprises several elements:

- Interstate Highways – The Dwight D. Eisenhower National System of Interstate and Defense Highways consists of limited access facilities of the highest importance to the nation and built to uniform geometric standards. They connect, as directly as practicable, the principal metropolitan areas, cities and industrial centers and provide important routes to, through and around urban areas.

- Strategic Highway Network (STRAHNET) – STRAHNET roadways are those which would be used for the rapid mobilization and deployment of armed forces in the event of war or peacekeeping activity. These routes connect military bases to the Interstate highway network and include over 61,000 miles of roadway nationally, according to the US Military's Transportation Engineering Agency. STRAHNET routes within Alabama total 1,074 miles.

- Congressional High Priority Corridors – Numerous corridors across the nation were designated by Congress to address travel and economic development needs in regions which are not adequately served by the Interstate highway system. High Priority Corridors receive preferential treatment for funds related to planning and construction projects designed to improve long-distance personal travel and freight movement. There are six such corridors in Alabama.

- Other Federal and State Highways – Several other highways on the federal and/or state system are designated for inclusion in the NHS network. These provide connectivity between additional communities not located along an Interstate highway, STRAHNET route or Congressional High Priority Corridor, and also serve to define a more contiguous grid of connections between those facilities.

- Key Intermodal Connectors – Several short roadway segments around the state link airports and docking facilities with one of the four previously defined classes of roadway and are also defined as part of the NHS network. This system includes 16 segments, 2 of which connect to bus terminals, 5 to ports, 4 to airports, 4 to truck/rail facilities and 1 to a pipeline facility.

Functional Classification

Classifying the roadway system by how each roadway functions allows for analysis and evaluation of the roadway’s effectiveness within the system. Roadways are described by the federal functional classification system, which defines a roadway based on its accessibility and mobility. On one end of the spectrum are expressways or Interstates, which provide the greatest mobility but the least accessibility. On the other end are local roads, providing the greatest accessibility but the least mobility. In brief, the primary functional classification categories are:

- Interstates and Freeways/Expressways – provide the greatest mobility because access is generally limited to defined interchanges and high-speed movement is permitted.

- Arterial Streets – carry large volumes of traffic at moderate speeds, providing the essential regional network and connecting activity centers. In addition to rural or urban designation, arterials are further divided into principal arterials and minor arterials.
Alabama Statewide Transportation Plan Update

Alabama Highway System

Figure 2.2

Legend

National Highway System (NHS)*
- Interstate
- Non-Interstate STRAHNET
- STRAHNET Connectors
- Other NHS
- Intermodal Connectors

Other Features
- Alabama Highway
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Note
Solid lines denote roadway features incorporated in the ALDOT roadway network. Broken lines denote roadway features that are proposed or are currently under construction.

Source: ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.

June 2008
Collector Streets – connect activity centers and residential areas by collecting traffic from streets in residential and commercial areas and distributing it to the arterial system at low to moderate speeds.

In general, Interstates and selected federal highways comprise the rural principal arterial network, while the remaining federal and state facilities constitute the rural minor arterial network. Within urban areas, federal and state highways typically define a major portion of the urban principal and minor arterial network, although a significant number of county and municipal roads are also classified as urban arterials. Due to the density of the network, the urban network and rural collectors are not shown on Figure 2.2. Table 2.1 details the number of miles and vehicle miles traveled (VMT) for each functional classification for year 2035 and provides the percent change in VMT from 2005 to 2035.

Table 2.1 Roadway Characteristics by Functional Classification (2035)

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Planning Area 1</th>
<th>Planning Area 2</th>
<th>Planning Area 3</th>
<th>Planning Area 4</th>
<th>Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>Road Miles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate</td>
<td>588</td>
<td>1</td>
<td>589</td>
<td>581</td>
<td>19</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>N/A</td>
<td>25</td>
<td>25</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>580</td>
<td>253</td>
<td>833</td>
<td>581</td>
<td>351</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>479</td>
<td>129</td>
<td>608</td>
<td>1,446</td>
<td>236</td>
</tr>
<tr>
<td>Collector</td>
<td>588</td>
<td>1</td>
<td>589</td>
<td>581</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>1,735</td>
<td>459</td>
<td>2,194</td>
<td>2,822</td>
<td>794</td>
</tr>
<tr>
<td>VMT (thousands)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate</td>
<td>4,666</td>
<td>2,989</td>
<td>7,655</td>
<td>5,743</td>
<td>18,603</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>N/A</td>
<td>1,385</td>
<td>1,385</td>
<td>N/A</td>
<td>214</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>7,988</td>
<td>6,045</td>
<td>14,033</td>
<td>9,328</td>
<td>10,051</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>3,453</td>
<td>1,273</td>
<td>4,726</td>
<td>14,117</td>
<td>4,172</td>
</tr>
<tr>
<td>Collector</td>
<td>2,308</td>
<td>2</td>
<td>2,310</td>
<td>3,609</td>
<td>276</td>
</tr>
<tr>
<td>Total</td>
<td>18,415</td>
<td>11,694</td>
<td>30,109</td>
<td>42,797</td>
<td>33,316</td>
</tr>
<tr>
<td>Change in VMT 2005 to 2035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate</td>
<td>50%</td>
<td>36%</td>
<td>44%</td>
<td>52%</td>
<td>37%</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>N/A</td>
<td>16%</td>
<td>16%</td>
<td>N/A</td>
<td>9%</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>34%</td>
<td>24%</td>
<td>30%</td>
<td>53%</td>
<td>23%</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>37%</td>
<td>26%</td>
<td>34%</td>
<td>62%</td>
<td>39%</td>
</tr>
<tr>
<td>Collector</td>
<td>46%</td>
<td>50%</td>
<td>46%</td>
<td>62%</td>
<td>28%</td>
</tr>
<tr>
<td>Total</td>
<td>40%</td>
<td>26%</td>
<td>35%</td>
<td>56%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Congested Roadways

The results of the statewide travel demand model provide insight on the roadway needs based on existing and future congestion. To quantify the congestion on Alabama's roadways, the volume to capacity (v/c) ratio was used as a performance measure. The v/c ratio compares the amount of traffic on a facility to its total available capacity to indicate whether a facility is congested, with a ratio of 1.0 indicating demand volume equals capacity. Since roads in urban and rural areas have different operational characteristics and users have different expectations for these roadways, separate performance measures are used for...
these two systems. In rural areas, a v/c ratio of 0.75 or greater is considered deficient, while a ratio of 0.90 or greater in urban areas is used to define deficiencies.

Currently, 3 percent of the state’s roadway miles operate at an inadequate level of service. As expected, most of the congested roadway segments are located within urban areas. As shown in Figure 2.3, Birmingham experiences the most congestion, followed by Montgomery and Mobile. Decatur, Huntsville, Gadsden and Tuscaloosa also contain a number of congested roadway segments. Further analysis of existing conditions can be found in the Existing System Assessment report.

With population growth, congestion will continue to be an issue on Alabama’s transportation system. By 2035, congestion will affect almost 17 percent of the state’s roadway miles. Interstates will suffer the worst, with almost 70 percent of these facilities operating below desired levels of service. Urban roads will be especially congested with 35 percent of the urban system operating at unacceptable levels. By roadway functional classification, the most congested of all the state’s roads is expected to be the Interstates in both urban and rural areas. Table 2.2 and Figure 2.4 illustrate the future statewide congestion needs.

Table 2.2 2035 Congestion

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Planning Area 1</th>
<th>Planning Area 2</th>
<th>Planning Area 3</th>
<th>Planning Area 4</th>
<th>Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>Total System Miles</td>
<td>1,735</td>
<td>459</td>
<td>2,194</td>
<td>2,822</td>
<td>794</td>
</tr>
<tr>
<td>Congested Road Miles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstate</td>
<td>39</td>
<td>8</td>
<td>47</td>
<td>178</td>
<td>138</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>N/A</td>
<td>10</td>
<td>10</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>63</td>
<td>69</td>
<td>132</td>
<td>140</td>
<td>163</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>163</td>
<td>69</td>
</tr>
<tr>
<td>Collector</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>61</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>89</td>
<td>199</td>
<td>542</td>
<td>376</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Congested (percentage of total system miles)</th>
<th>Planning Area 1</th>
<th>Planning Area 2</th>
<th>Planning Area 3</th>
<th>Planning Area 4</th>
<th>Statewide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>Interstate</td>
<td>44%</td>
<td>16%</td>
<td>34%</td>
<td>83%</td>
<td>74%</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>N/A</td>
<td>40%</td>
<td>40%</td>
<td>N/A</td>
<td>100%</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>11%</td>
<td>27%</td>
<td>16%</td>
<td>24%</td>
<td>46%</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>11%</td>
<td>29%</td>
</tr>
<tr>
<td>Collector</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>Total</td>
<td>6%</td>
<td>19%</td>
<td>9%</td>
<td>19%</td>
<td>47%</td>
</tr>
</tbody>
</table>

9 Congested conditions reflected are for roads on the State system only. Non-State roads (955 miles) included only as needed to model all interchanges and provide connectivity.
Figure 2.3

Legend

2005 Congested Roadways*
- Congested Roadway*
- Non-Congested Roadway

Other Layers
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

2005 Congested Roadways*

Planning Area # 1
Planning Area # 2
Planning Area # 3
Planning Area # 4

*Note
"Congested" roads refer to roadways having a level of service (LOS) E or F in urban areas, and LOS D, E, or F in rural areas.
Figure 2.4

Legend

2035 E+C Congested Roadways*

- Congested Roadway*
- Non-Congested Roadway

Other Layers

- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT and Jacobs Carter Burgess

*Note

“Congested” roads refer to roadways having a level of service (LOS) E or F in urban areas, and LOS D, E, or F in rural areas.

E+C - Existing and committed projects (capacity adding projects that are in the Statewide Transportation Program and have advanced to Right-of-Way and/or construction phases).

June 2008
Needs Assessment: Congestion

The travel demand model results were used to develop a total cost estimate for congestion relief projects over the study period. Capacity improvement projects can vary greatly in cost. The per-mile cost of a capacity project is based on whether it is located in an urban or rural area. The following cost estimates, provided by ALDOT’s Transportation Planning Department, were used to calculate the needs\(^\text{10}\) based on the number of road miles projected to reach inadequate levels of service by 2035:

- Urban Non-Interstate = $7 million per mile
- Rural Non-Interstate = $4.5 million per mile
- Interstate\(^\text{11}\) = $11 million per mile

By horizon year 2035, 760 miles of roadway exceed the acceptable v/c ratio in urban areas. Of these deficient road miles, 238 are on the Interstate system. The total cost for capacity improvement projects on urban roads during the study period is $7.1 billion statewide ($4.5 billion for non-Interstate needs and $2.6 billion for Interstate congestion needs).

Rural areas throughout the state include 1,062 miles of congestion needs, including 392 miles on rural Interstates. Over the duration of the study period, $5 billion in congestion needs are projected for the rural roadway network ($1.7 billion for non-Interstate and $3.3 billion for Interstate needs).

Complete Streets

Increasingly state and local governments recognize the need for obtaining maximum use of existing facilities, leading to a closer examination of “complete streets” applications that facilitate multimodal use of existing facilities. Where application of complete streets is appropriate, the MPOs work closely with ALDOT to enhance opportunities for pedestrians, cyclists, transit riders, the disabled and motorists to use the transportation facility and improve mobility. Safety is an important aspect of the complete streets concept. The selective inclusion of sidewalks, raised medians, turning access controls, better lighting, traffic calming and ADA facilities improve pedestrian, bicyclist and motorist travel. In addition, complete streets facilitate modal transportation alternatives for short-distance trips, encouraging walking and cycling and reducing congestion. Complete streets are more typically found in urban environments where access management and traffic operations improvements are important to maintaining mobility. This concept can be most effective when linking activity centers in densely populated areas.

Truck Traffic

A region’s economic vitality depends on its ability to safely and efficiently move goods through and within its borders. Businesses and individuals throughout the state depend on the transportation system to transport the products, materials and supplies that support everyday activities. The movement of freight greatly impacts the safety and operation of Alabama’s transportation system.

\(^\text{10}\) Cost estimates are for widening one lane for one mile in both directions.

\(^\text{11}\) Per mile cost estimates for Interstate improvements were based on data from the Atlanta Regional Commission’s Mobility 2030 Regional Transportation Plan and Florida DOT.
Commercial vehicles utilize the state’s highways to move goods from origins and transfer points to their destinations. Table 2.3 describes the percentage of capacity of each type of road that is consumed by trucks today and the projected truck traffic in 2035, which is based on UAH’s freight model. Existing and future truck volumes on Interstates and arterials throughout the state are shown in Figures 2.5 and 2.6, respectively. In addition to occupying the physical space of more than two passenger vehicles, these large vehicles have operational characteristics that impact the flow of traffic. Commercial vehicles operate at slower speeds and take longer to accelerate, which can impede the flow of surrounding traffic.

Table 2.3 Truck Traffic

<table>
<thead>
<tr>
<th>Planning Area</th>
<th>Functional Classification</th>
<th>2005 Mean Values</th>
<th>2035 Mean Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Truck Volume*</td>
<td>Truck Percent</td>
</tr>
<tr>
<td>1</td>
<td>Interstate</td>
<td>2,300</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Arterial</td>
<td>520</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Areawide</td>
<td>590</td>
<td>14%</td>
</tr>
<tr>
<td>2</td>
<td>Interstate</td>
<td>4,180</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>Arterial</td>
<td>760</td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td>Areawide</td>
<td>990</td>
<td>20%</td>
</tr>
<tr>
<td>3</td>
<td>Interstate</td>
<td>3,940</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>Arterial</td>
<td>1,210</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Areawide</td>
<td>1,300</td>
<td>37%</td>
</tr>
<tr>
<td>4</td>
<td>Interstate</td>
<td>3,120</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Arterial</td>
<td>410</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>Areawide</td>
<td>500</td>
<td>16%</td>
</tr>
</tbody>
</table>

*Truck volumes were retrieved from the freight model developed by the University of Alabama at Huntsville.

The highest levels of truck traffic in each area, and the largest forecast increases, are naturally on Interstate highways. Planning Area 2 includes the Birmingham metropolitan region, four Interstate facilities – I-20 (east-west), I-59 (southwest to northeast), I-65 (north-south), and I-459 (around the southern beltline) – and some of the most heavily congested urban roads in the state. It is no surprise that the truck model indicates the highest truck volumes in this area and forecasts an increase in the truck percentage on Interstate routes from 12 percent to 20 percent.

Truck traffic in Planning Area 3, which includes Mobile, I-10 and I-65, also shows significant increases forecast for truck traffic on the Interstate routes and throughout the area. Here, despite the large increase in the number of trucks, truck traffic as a percentage of all vehicles on the roads is actually forecasted to fall. This statistic should be considered in light of the fact that Interstate vehicle miles traveled (VMT) in Planning Area 3 is forecast to increase by 52 percent, resulting in congested conditions on 73 percent of the Interstate network in the area.
Figure 2.5

Legend
2005 Daily Freight Volumes*
- Over 4000 Vehicles / Day
- 2001 - 4000 Vehicles / Day
- 1001 - 2000 Vehicles / Day
- 101 - 1000 Vehicles / Day
- Less Than 100 Vehicles / Day

Other Layers
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT and Jacobs Carter Burgess
This map is intended for planning purposes only.

2005 Daily Freight Volume*

* Note
Freight volumes were retrieved from the freight model developed by the University of Alabama at Huntsville.
Figure 2.6

Legend

2035 E+C Daily Freight Volumes*
- Over 4,000 Vehicles / Day
- 2,001 - 4,000 Vehicles / Day
- 1,001 - 2,000 Vehicles / Day
- 101 - 1,000 Vehicles / Day
- Less Than 1,000 Vehicles / Day

Other Layers
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

* Note
Freight volumes were retrieved from the freight model developed by the University of Alabama at Huntsville.

Source: ALDOT and Jacobs Carter Burgess
This map is intended for planning purposes only.

2035 E+C Daily Freight Volumes*
Needs Assessment: Truck Traffic

Through outreach efforts, the public provided input on the safety concerns regarding trucks on rural roads. The mountainous terrain that covers much of the state makes for dangerous conditions for truck travel. Truck traffic will continue to increase, contributing to congestion statewide.

Options such as truck-only lanes can help to mitigate the impact of trucks on other mainline traffic, as well as improve efficiency and reliability in the supply chain. Truck lanes are one possible option to reduce the impact of high levels of truck traffic, with particular benefits for congestion, safety and security. Truck lanes can help reduce accidents in number and severity on main highways, and they can promote better security on the highway network through improved access to services such as truck stops, rest areas and weigh stations.

If there is a decision to consider the option of truck-only lanes, the cost of these improvements is high. A 2005 study on potential cross-state truck lanes along I-80 in Iowa estimated the costs for constructing truck lanes to be $4 to $8 million per mile, with the high costs due to right of way acquisition, heavy duty construction, and expensive design work; other studies have estimated costs per mile up to $10 million. Assessing the need for truck-only lanes, their feasibility in Alabama and possible implementation should be considered in the future.

Intelligent Transportation Systems

As Intelligent Transportation Systems (ITS) continue to grow nationwide, agencies throughout the state have begun to implement various forms of this technology. The state developed a statewide ITS architecture plan, and systems are in place in several urban areas, most notably Birmingham. The two primary challenges hampering maximum utilization and expansion across the state are the lack of infrastructure to enable information sharing and insufficient funding with which to implement projects. As systems develop, the statewide ITS architecture will enhance opportunities to move traffic efficiently throughout the state’s roadway network.

The Birmingham region currently has the largest functioning ITS system. The city has 19 wireless surveillance cameras at 10 locations (including 9 north-south or east-west pairs), viewable by live streaming video online, as well as Dynamic Message Signs (DMS) in several locations. Although there is a staffed Traffic Control Center (TCC), there are few opportunities to fully utilize the information since they lack the speed detectors required to provide estimated travel times. A current project intended to address this issue involves the installation of speed detectors, cameras and DMS along an 8-mile stretch of I-65.

Prior to Hurricane Katrina, Mobile had an effective system of cameras and speed detectors, covering approximately 10 miles, used to monitor the tunnels in downtown and fog advisories on I-10 over Mobile Bay. Currently, the City is preparing plans to repair the system.

Montgomery, Hoover, Huntsville and Tuscaloosa are also building on their systems. Currently only Hoover is able to share information with ALDOT. Tuscaloosa offers a cable channel to display images from their approximately 10 cameras. Montgomery has a master plan to install approximately 20 cameras along approximately 40 miles of I-65 and I-85 through town. Although funding is not currently available to implement the plan, they are investigating temporary solutions to develop parts of the system. Similarly, the Muscle Shoals area has a small system of cameras and DMS, for which they are currently awaiting plans for implementation.
Another ITS element widely in use in urban areas across the state is the coordinated signal system, which ties traffic signals along a corridor together into a timed system to better address the flow of traffic. Following the completion of the Huntsville Regional Intelligent Transportation System (HRITS) Architecture, the City of Huntsville has begun to lay the groundwork for implementing advanced traffic signal controllers and video detection along one of the City's major corridors. The first cameras and controllers should be operational in mid 2008.

ALDOT also utilizes temporary, portable DMS within localized areas along the Interstates to inform the traveling public of construction or other safety related issues. Additionally, Highway Advisory Radios (HAR) are installed at locations along the entire north-south length of I-65. In Florence, a de-icing system is in place along Oneal Bridge to automatically spray de-icing chemicals on the roadway under freeze conditions. Furthermore, wireless cameras have been installed at interchanges along I-65 between Mobile and Montgomery for use during hurricane evacuations.

Needs Assessment: ITS

ITS offers operational benefits without the magnitude of cost or the right of way required for capacity improvements. Technologies such as electronic screening of commercial vehicles, which uses in-vehicle transponders to communicate to weigh stations and pre-screen trucks for safety records and proper credentials, can reduce congestion at inspection stations, improve travel time for commercial vehicles, and help the trucking industry and regulating agencies reduce costs and improve safety and security. ALDOT should continue to support the implementation of this technology by supporting local and regional ITS plans. The development of a statewide plan would also unify efforts throughout the state and allow for an integrated system that would best serve the traveling public.

Maintenance

The preservation of existing roadways is an integral component to maintaining an efficient transportation system. Pavement conditions worsen as roads age, which can impact the facility’s safety and operations. Effective maintenance programs require continuous monitoring and improvements. ALDOT’s Bureau of Maintenance assesses pavement conditions annually to determine which roads need resurfacing. The Department prioritizes maintenance need by pavement rating, which is maintained by the University's HYDRA (Highway Yearly Data Reduction and Analysis) system.

Figure 2.7 depicts pavement ratings on roadways throughout the state. Average pavement ratings on Alabama’s roadways are fairly consistent among planning areas and between rural and urban areas. Interstate ratings range from 82 in Planning Area 4 to 72 in Planning Area 1, while State Route ratings range from 67 in Planning Area 1 to 61 in Planning Area 4. For Interstates, both rural areas and urban areas rate 76. On State Routes, rural areas rate 64 while urban areas rate 67. The number of Interstate road miles with pavement ratings of 83 or lower (out of 100) and State Route road miles with pavement ratings of 80 and lower are compared by planning area in Table 2.4.
2006 ALDOT Pavement Rating

Planning Area #1

Planning Area #2

Planning Area #3

Planning Area #4

Legend

2006 ALDOT Pavement Rating

- 70.1 - 100.0 (Good Condition)
- 55.1 - 70.0 (Fair Condition)
- 0.0 - 55.0 (Marginal Condition)
- No Data Available

Other Features

- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: HYDRA database, ALDOT, and Jacobs Carter Burgess

This map is intended for planning purposes only.

June 2008
Table 2.4 Pavement Rating for Interstates and Non-Interstate Facilities

<table>
<thead>
<tr>
<th>Area</th>
<th>Non-Interstate Facilities with Pavement Rating < 80</th>
<th>Interstate Facilities with Pavement Rating < 83</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Road Miles</td>
<td>% of Total</td>
</tr>
<tr>
<td>Planning Area 1</td>
<td>1421</td>
<td>68.2%</td>
</tr>
<tr>
<td>Planning Area 2</td>
<td>2434</td>
<td>70.9%</td>
</tr>
<tr>
<td>Planning Area 3</td>
<td>1693</td>
<td>76.0%</td>
</tr>
<tr>
<td>Planning Area 4</td>
<td>2008</td>
<td>77.8%</td>
</tr>
<tr>
<td>Total</td>
<td>7556</td>
<td>76.6%</td>
</tr>
</tbody>
</table>

Note: Mileage totals may differ from functional classification mileage.
Source: HYDRA

Needs Assessment: Maintenance

One of the requirements set forth by SAFETEA-LU for transportation plan development is to ensure the preservation of the existing transportation system. If performed regularly, roadway maintenance can prolong the useful life of a transportation facility and delay more costly reconstruction projects. ALDOT's Maintenance Bureau is responsible for the preservation of the more than 10,000 miles of State roads. Resurfacing, patching and other maintenance activities are funded through ALDOT's State Maintenance Program. Additional funding is necessary to improve the existing maintenance program.

According to pavement ratings maintained in the HYDRA database, over 2,666 miles of roadway are currently at or below the state's lowest rating threshold of 55. In 2006, pavement preservation and maintenance projects averaged approximately $245,000 per mile, which equates to $653 million of existing pavement maintenance needs. ALDOT's State Maintenance Program currently invests about $95 million annually through the CPMS. Additional resurfacing projects are also identified and funded through the CPMS process. The current CPMS contains 252 miles of pavement maintenance projects (162 miles of which are in STIP). These projects cover only 9 percent of the existing pavement maintenance needs statewide, resulting in a total of $558 million unmet needs.

Future needs must be considered in addition to existing unmet pavement maintenance needs. Pavement conditions worsen as roadways age; therefore, pavement maintenance needs will continue to increase over the life of the study. To project needs to 2035, a deterioration rate developed by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE) and University Transportation Center for Alabama (UTCA) was applied to the existing pavement ratings. Through the study performed for ALDOT, these research organizations found that statewide pavement ratings decreased at a pace of 4 percent per year. This deterioration rate was used to project needs from the end of the current CPMS through year 2035.

At an annual rate of 4 percent, roads would deteriorate from ideal conditions to needing rehabilitation in about 15 years. Therefore, during the 24 years between the end of the current CPMS (2011) and the horizon year (2035), the entire roadway network would require replacement 1.6 times. The total cost of the existing unmet pavement needs plus projected needs totals $4.9 billion.

As the number of road miles increases over time, so will the magnitude of resurfacing and maintenance needs. ALDOT should continue efforts to maintain the system. As the demand increases, more emphasis
should be placed on prioritization of needs. Pavement ratings should be updated regularly so that the most accurate scores can be used to identify which roadway segments are in the most need of repair.

Emergency Evacuation Routes

Alabama must be prepared to meet various types of natural and manmade disaster threats. Although the most likely is hurricanes along the Gulf Coast, additional possibilities to be considered apply to areas surrounding nuclear power facilities and for other events such as chemical spills which could occur anywhere in the state.

In response to increasing hurricane threats, ALDOT worked with the Alabama Emergency Management Agency (EMA) to identify a system of routes that will provide safe and efficient evacuation of the coastal area. The system, combining Interstates, US highways, State Routes and county roads, extends from the coast to points as far north as Tuscaloosa. The state must also deal with large numbers of evacuees from the Florida Panhandle traveling through southeast Alabama. Routes to assist the out-of-state travelers are included in the evacuation plan. The plan’s effectiveness is dependent on adequate, well-maintained roadways and bridges along all routes.

Figure 2.8 illustrates Alabama’s evacuation system. The evacuation network consists of all types of roadways, with the major arterials serving as the backbone of the system. I-65, US 43, and US 31 are the major evacuation routes in Mobile and Baldwin counties. These roadways accommodate evacuees traveling inland to cities such as Montgomery, Demopolis and Tuscaloosa. US 231, US 331, and US 431 are the major evacuation routes used by those fleeing the Florida Panhandle, delivering evacuees to inland cities such as Dothan, Montgomery and Columbus, Georgia.

Because of the large number of evacuees using I-65, ALDOT has developed a plan which allows southbound lanes to be reversed for northbound use. The reverse-laning begins at SR 225 and ends at US 82 in south Montgomery, with US 31 used as a detour for all southbound traffic. In the event of a mass evacuation, ALDOT can implement the reverse-laning plan so that all lanes are used for northbound traffic. ALDOT personnel and law enforcement officials would be located at exits to ensure procedures are followed. Plans and implementation tactics are in place, making Alabama prepared to respond effectively to disaster threats.

Due to Alabama’s proximity to the coast, evacuations caused by hurricanes occur often. To prepare for these events, many local governments, including MPOs, develop effective evacuation plans as part of their long range transportation planning effort. ALDOT has worked with these organizations to prepare appropriate plans and document programming required for implementation, especially in coastal areas where hurricanes are major threats.

The Mobile area, including nearby coastal areas of Dauphin Island and Gulf Shores, is particularly vulnerable to hurricanes. The coastal and surrounding areas are low lying and subjected to storm surges during even minor storms. Storm surges can also cause major flooding in downtown Mobile by forcing water up into the bay and causing flooding in surrounding areas. Because of this, Mobile has a large geographical area and many citizens to evacuate, often in a short period of time. To assist in orderly evacuation, Mobile and Baldwin counties have been broken down into zones, the numbering of each zone coordinating with the category of hurricane that calls for the evacuation of that particular zone. For example, Zone 3 residents would need to evacuate for a hurricane of category three or higher, but evacuation would not be necessary for a less fierce category one or two storm. The evacuation plan
Alabama Statewide Transportation Plan Update

Figure 2.8

Legend

- **Hurricane Evacuation Network**
- **State Road Network**
 - Interstate
 - Other State Road Network
- **Other Features**
 - Planning Area Boundary
 - County Boundary
 - Urbanized Area
 - Lakes

- **Source:** ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.

Hurricane Evacuation Routes

Planning Area #1

Planning Area #2

Planning Area #3

Planning Area #4

June 2008
covers all of Mobile County and all areas south of I-10 in Baldwin County. In addition to the county level evacuation zones, the more densely populated cities of Orange Beach and Gulf Shores have further subdivided their areas into smaller zones to help assist with evacuations.

Needs Assessment: Emergency Evacuation Routes

The concern brought about by recent natural disasters has resulted in the development of evacuation plans and a system of dedicated routes. To ensure efficient evacuations in emergency situations, the existing system needs continuous monitoring and improvements. Hurricane routes should receive priority for projects such as capacity improvements and maintenance activities. Additional consideration should be given to potential problems within the existing system such as choke points.

Though local evacuation plans offer those within a given area a specified route to take in an emergency, they do not always consider the impact of this routing on surrounding facilities. The extreme traffic volumes that result from evacuations can cause choke points at different locations, including segments that pass through downtown areas (such as Dothan). Traffic control plans should be established to help maintain an efficient flow of traffic through problem locations.

In parts of south Alabama, projects have been considered that would provide additional evacuation capacity. In early 2007, a feasibility study was completed for the Wolf Bay Bridge Project in the City of Orange Beach. The report concluded that the project would provide needed regional connectivity and could be funded through tolls over a 25-year period. The study also noted that the project had recently gained the support of many who first opposed the construction of this bridge. Work should continue on this project as an important addition to evacuation capacity.

ITS technologies can also improve operations during emergency evacuations. The implementation of ITS technologies can help traffic controllers obtain data on and keep evacuees informed of traffic conditions. During past evacuations, ALDOT employed some ITS technologies such as Variable Message Signing (VMS) and HAR. These efforts should be sustained for future efforts. Alabama should also continue efforts to coordinate with neighboring states to ensure seamless evacuation procedures.

Safety

Nationwide 42,000 motorists die and over 3 million are injured on roadways each year. There are approximately 145,000 vehicular crashes each year in Alabama, resulting in approximately 1,100 fatalities and 45,000 injuries. Safety is a matter of national concern and importance to the welfare of the motoring public. It is also important to the economy that benefits from mitigation of non-recurring incidents on major highways and freeways.

Alabama has been moving forward and making strides to improve vehicular safety and reduce fatalities and injuries on Alabama roadways for motorists. The Comprehensive Highway Safety Plan for Alabama, October 2004, was prepared by the University Transportation Center for Alabama (UTCA) at the request of ALDOT. This plan focused on five emphasis areas, derived from an analysis of fatal crashes in Alabama: emergency medical services (EMS), legislation, older or at-risk drivers, risky driving, and run-off-road crashes.

In 2005, newly enacted SAFETEA-LU legislation required that each state develop a Strategic Highway Safety Plan (SHSP). Different agencies involved in highway safety were required to coordinate their programs and unify their efforts to reduce crashes and improve safety. In response to the legislation,
ALDOT engaged UTCA to develop the SHSP. It was signed by the Governor and seven state and federal agency heads on September 30, 2006, with FHWA approval given on December 4, 2006. By February 2007, UTCA had prepared an Action Plan for implementing the SHSP for Alabama. The Action Plan addresses each of the five emphasis areas noted above, including preferred treatments, cost estimates, and time schedules.

Needs Assessment: Safety

Alabama is taking positive steps to improve highway safety. While infrastructure improvements are important, a significant factor affecting safety is human behavior. ALDOT and UTCA have been integral in making the issue of safety a priority by bringing together various highway safety agencies in Alabama and developing stepwise strategic plans aimed at reducing fatality crashes and improving overall safety for all system users. The SHSP for Alabama and the Action Plan prepared by UTCA in February 2007 is a testament to State efforts to improve vehicular safety and the quality of life for the citizens of and visitors to Alabama. It is critical that all agencies involved in highway safety coordinate and consolidate resources to improve the safety of Alabama’s roadways.

The SHSP details safety needs throughout the state and identifies specific measures to mitigate the top five safety issues: improving the State’s Emergency Medical Services (EMS) system, enhancing legislative support for safety programs, addressing the issue of older or at-risk drivers, combating risky driving and mitigating the issue of lane departure. The implementation plans for each of these issues included recommended improvements (highlighted below), cost estimates and schedules:

- **EMS system** – Improvements to include developing a uniform communications system and enhanced services in rural areas, as well as performing an assessment to determine additional local and statewide needs.
- **Legislative support** – Identifying best practices of existing legislation and prioritizing potential legislation focused on improving safety. The importance of identifying “champions” to assist in safety enhancement efforts is also emphasized.
- **Older or at-risk drivers** – With the projected growth in the elderly population, the number of at-risk and older drivers on the roads will increase over the study period. Recommended strategies include roadway improvements and efforts to keep unsafe drivers off the roads.
- **Risky driving** – Behaviors such as speeding, driving under the influence of drugs or alcohol, and adherence to seatbelt requirements were addressed by educational, incentive and enforcement strategies.
- **Lane departure** – Recommendations include consideration of how these occurrences affect safety on county roads, state/federal highways and Interstates and potential mitigation strategies.

In addition to the SHSP, ALDOT has undertaken studies concentrated on specific problem areas. Alabama is currently conducting a study to identify the top ten crash locations and recommend strategies to enhance safety at these locations. Several additional university research projects, sponsored by ALDOT, look at various safety concerns and potential solutions. To best understand and therefore improve the safety of the transportation system, ALDOT should continue to support such research activities and use the results from these studies to improve the system. Implementation plans laid out in the SHSP offer significant potential safety benefits for Alabama’s transportation system. Focus should be placed on putting these plans into action.
Bridges

Safe and adequate bridges are a necessary part of the highway system. All state and locally owned public bridges are inspected at least every two years as part of the state’s safety inspection program. The bridge sufficiency rating is a score, ranging from 0 to 100, that assesses a bridge’s: (1) structural adequacy and safety, (2) serviceability and functional obsolescence, and (3) essentiality for public use. ALDOT maintains and regularly updates the bridge inventory. Sufficiency ratings are updated in accordance with FHWA’s NBI (National Bridge Inventory) Coding Guide.

Eligibility for federal funding to replace or rehabilitate Alabama’s bridges is determined from FHWA criteria that establish thresholds for replacement or rehabilitation. Criteria for federal funding under the Highway Bridge Program (HBP) address bridge sufficiency, structural condition and functional obsolescence. Replacement and rehabilitation criteria are as follows:

- **Bridge Replacement** – Bridge sufficiency rating of 50 or less, structurally deficient and/or functionally obsolete. A functionally obsolete bridge is defined as too narrow to serve the existing volume of traffic, regardless of structurally integrity.
- **Bridge Rehabilitation** – Bridge sufficiency rating of 80 or less, structurally deficient and/or functionally obsolete.

As shown in Table 2.5 and Figure 2.9, 5 percent of bridges on the state system currently qualify for replacement under the HBP. An additional 2,352\(^{12}\) (39.5 percent) are eligible for rehabilitation funds under this program. In instances where a bridge does not qualify under these criteria, an alternative source of funding must be found. For example, replacement and rehabilitation may be funded as part of a roadway improvement project.

Table 2.5 Bridge Sufficiency Rating

<table>
<thead>
<tr>
<th>Area</th>
<th>Sufficiency Rating (Percent of Area Total)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than 50</td>
<td>50.1-70</td>
</tr>
<tr>
<td>Urban</td>
<td>97</td>
<td>354</td>
</tr>
<tr>
<td>Rural</td>
<td>199</td>
<td>757</td>
</tr>
<tr>
<td>Total</td>
<td>296</td>
<td>1111</td>
</tr>
<tr>
<td>Planning Area 1</td>
<td>53</td>
<td>198</td>
</tr>
<tr>
<td>Planning Area 2</td>
<td>136</td>
<td>404</td>
</tr>
<tr>
<td>Planning Area 3</td>
<td>65</td>
<td>285</td>
</tr>
<tr>
<td>Planning Area 4</td>
<td>42</td>
<td>224</td>
</tr>
<tr>
<td>Total</td>
<td>296</td>
<td>1111</td>
</tr>
</tbody>
</table>

Source: ALDOT

\(^{12}\) This is the number of bridges with a sufficiency rating of more than 50 but less than 80 and therefore eligible for rehabilitation.
2007 Bridge Sufficiency Rating

Figure 2.9

Legend
2007 Bridge Sufficiency Rating*
- ▲ 70.1% - 80.0%
- ▲ 50.1% - 70.0%
- ▲ 0.1% - 50.0%
- ▲ Data Unavailable

Alabama Highway System
- Interstate Highway
- State or U.S. Highway

Other Features
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.

* Note
Bridges with a sufficiency rating greater than 80% are not shown.

June 2008
Generally speaking, after a bridge reaches the age of 50 years, some form of rehabilitation or replacement is anticipated. Table 2.6 illustrates the age distribution of bridges throughout the state. According to ABIMS (Alabama Bridge Information Management System), over 30 percent (1,802) of the state’s bridges are over 50 years of age. Further analysis reveals that an additional 24 percent (1,410) of the bridges statewide will reach their 50-year lifespan within the next ten years, as shown in Table 2.7 and Figure 2.10.

<table>
<thead>
<tr>
<th>Area</th>
<th>Year</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>422</td>
<td>557</td>
</tr>
<tr>
<td>Rural</td>
<td>1610</td>
<td>711</td>
</tr>
<tr>
<td>Total</td>
<td>2032</td>
<td>1268</td>
</tr>
</tbody>
</table>

Table 2.7 Bridges Reaching 50-Year Lifespan Within the Next 10 Years

<table>
<thead>
<tr>
<th>Area</th>
<th>Number of Bridges</th>
<th>Percent of Total in Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>618</td>
<td>43.8%</td>
</tr>
<tr>
<td>Rural</td>
<td>792</td>
<td>56.2%</td>
</tr>
<tr>
<td>Total</td>
<td>1410</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Combining those bridges currently 50 years or older with those reaching this milestone within 10 years, more than half of Alabama’s bridges will be at or past the anticipated lifespan within this time frame. As shown in Table 2.8, 78 percent of the state’s bridges will reach 50 years of age within the study period.
Bridges 50 Years Old or Older by Year 2035

Legend

Bridges Approaching Deficient Status Due To Age In 2035
- Bridge 50 Years Old or Older by 2035
- Bridge Younger Than 50 Years by 2035

Alabama Highway System
- Interstate Highway
- State or U.S. Highway

Other Features
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.
Table 2.8 Bridges Reaching 50-Year Lifespan Within the Study Period

<table>
<thead>
<tr>
<th>Area</th>
<th>Number of Bridges</th>
<th>Percent of Total in Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>Planning Area 1</td>
<td>548</td>
<td>244</td>
</tr>
<tr>
<td>Planning Area 2</td>
<td>1106</td>
<td>800</td>
</tr>
<tr>
<td>Planning Area 3</td>
<td>658</td>
<td>274</td>
</tr>
<tr>
<td>Planning Area 4</td>
<td>613</td>
<td>404</td>
</tr>
<tr>
<td>Total</td>
<td>2925</td>
<td>1722</td>
</tr>
</tbody>
</table>

Needs Assessment: Bridges

Over the next ten years, funding will become a serious issue. During this time period, over half of the state’s bridges will reach the age or sufficiency rating that suggests the need for replacement or rehabilitation. Based on historic costs of Alabama bridges, the anticipated need over the next ten years totals $8 billion. By the plan’s horizon year 2035, bridge needs will total an estimated $11.8 billion.

Though some bridges are programmed for rehabilitation or replacement in ALDOT’s current CPMS, more are left for future plans. ALDOT Bridge Committee uses a methodology for prioritizing bridge projects. They use information from the bridge inspection, the age of the bridge, traffic counts and other factors in the prioritization. The 2006-2011 CPMS includes 31 bridge projects, 28 of which are on Interstates. Beyond the five-year plan, the CPMS includes an additional 20 bridge projects (18 of which are on Interstates). These projects in the five-year plan and beyond total $79 million, which represents 3.3 percent of the state’s identified bridge needs.

Road and Bridge Conditions by Planning Area

Understanding the geographical and functional differences of cities throughout the state of Alabama, analyses were performed by planning area. For the purpose of the SWTP, the state was split into four areas: north (Planning Area 1), central (Planning Area 2), southwest (Planning Area 3) and southeast (Planning Area 4). The exact boundaries of these designated planning areas are illustrated in the following figures. Part of the analysis includes identification of Environmental Justice (EJ) communities in each area. Environmental justice was introduced as a federal factor in transportation planning in Executive Order #12898, which requires consideration of the extent to which low-income and minority populations may be disproportionately impacted by transportation plans and projects.

Planning Area 1

The main attributes that distinguish Planning Area 1 from the rest of the state is its location along the Tennessee River and its mountainous terrain. All of the major cities within this region – Huntsville, Decatur, Florence, and Muscle Shoals – are situated along the banks of this major river, which provides access to both the Mississippi and Ohio River systems. The vast opportunity for waterborne freight transport provided by the region’s ports and docks also increases the region’s truck activity.

13 See Figure 1.1, page 1-2 for map of planning areas.
Consideration was given to the potential EJ communities in each planning area. As shown in Figure 2.11, there are high concentrations of minority populations and people living below the poverty level in several locations within Planning Area 1. These locations, which include parts of Colbert, Limestone, Madison and Lawrence counties, are high priorities for transit improvements. Though most of these EJ-populated communities are served by some type of transit, Athens in Limestone County does not currently have a rural transit system.

Road congestion projected for year 2035 in Planning Area 1 – 11 percent – is below the statewide average of 14 percent. VMT is forecast to increase by almost 25 percent compared to the state average of 48 percent. It should be noted that, with the exception of Interstate miles, the statistics for the urban areas are significantly higher than those for rural areas and the planning area as a whole.

Table 2.9 Operational Characteristics of Roadway Network – Planning Area 1

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Road Miles</th>
<th>VMT</th>
<th>Congested Road Miles</th>
<th>Change in VMT (2005-2035)</th>
<th>Percent Congested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>Interstate</td>
<td>88</td>
<td>51</td>
<td>139</td>
<td>4,666</td>
<td>2,989</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>1,385</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>580</td>
<td>253</td>
<td>833</td>
<td>7,988</td>
<td>6,045</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>479</td>
<td>129</td>
<td>608</td>
<td>3,453</td>
<td>1,273</td>
</tr>
<tr>
<td>Collector</td>
<td>588</td>
<td>1</td>
<td>589</td>
<td>2,308</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1,735</td>
<td>459</td>
<td>2,194</td>
<td>18,415</td>
<td>11,694</td>
</tr>
</tbody>
</table>

Bridge needs for Planning Area 1 are similar to most other regions, while pavement conditions are slightly worse. This is most likely due to the mountainous terrain of much of the region, which can cause roads to deteriorate at a faster rate.

Table 2.10 Bridge and Pavement Needs – Planning Area 1

<table>
<thead>
<tr>
<th>Need</th>
<th>Rural</th>
<th>Urban</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges Currently 50+ Years</td>
<td>71</td>
<td>283</td>
<td>354</td>
</tr>
<tr>
<td>Bridges Reaching 50+ During Study Period</td>
<td>548</td>
<td>244</td>
<td>792</td>
</tr>
<tr>
<td>Bridges with Sufficiency Rating Below 50</td>
<td>46</td>
<td>7</td>
<td>53</td>
</tr>
<tr>
<td>Percent of Interstate Miles with Pavement Rating Below 83</td>
<td>58%</td>
<td>22%</td>
<td>47%</td>
</tr>
<tr>
<td>Percent of Non-Interstate Miles with Pavement Rating Below 80</td>
<td>69%</td>
<td>68%</td>
<td>68%</td>
</tr>
</tbody>
</table>

Planning Area 2

Birmingham serves as the midpoint of Planning Area 2, which also includes the major cities of Tuscaloosa, Gadsden and Anniston. A majority of the state’s Interstates converge in Birmingham, which has caused some safety issues as well as congestion. Like Planning Area 1, the northeast portion of this region has mountainous terrain, which also provides a challenge to safe and efficient transportation in that part of the planning area.
Planning Area #1 - Environmental Justice Areas

Legend

- Areas with Urban or Rural Transit Systems
 - Urban Transit System Presence
 - Rural Transit System Presence

Environmental Justice Areas (2000 Census)

(Concentrations of Poverty and Non-White Population Where Areas Exceed Alabama Averages)

Roadway Network
- Interstate Highway
- Other State Route Network

Other Features
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT, US Census (2000) and Jacobs Carter Burgess

This map is intended for planning purposes only.
Figure 2.12 illustrates the boundaries of Planning Area 2 and the portions with high minority populations and concentrations of people living below the poverty level. Both the southeast and southwest sections of this region as well as portions of Alexander City and Talladega contain EJ populations.

The model results suggest that Planning Area 2 will experience the most congestion in 2035. Over 70 percent of the region’s urban Interstates will operate at inadequate levels of service if not improved, as will approximately 50 percent of the 587 miles of principal and minor arterial roads. This can be attributed to the large increase in VMT combined with the current condition of the roads. Urban roads will experience the greatest increase in VMT and, thus, in congestion.

| Table 2.11 Operational Characteristics of Roadway Network – Planning Area 2 |
|---|-----------------|-----------------|-----------------|-----------------|
| Roadway Classification | Rural | Urban | Total |
| Interstate | 214 | 186 | 400 | 15,743 | 18,603 | 34,346 | 178 | 138 | 316 | 52% | 37% | 44% |
| Collector | 581 | 19 | 600 | 3,609 | 276 | 3,885 | 61 | 4 | 65 | 62% | 39% | 57% |
| Total | 2,822 | 794 | 3,616 | 42,797 | 33,316 | 76,113 | 542 | 376 | 918 | 56% | 33% | 46% |

The bridge and pavement needs of Planning Area 2 also differ from the other regions. Almost twice as many bridges will need repair or replacement by 2035 than in any other region. Pavement needs, on the other hand, are less for this region.

| Table 2.12 Bridge and Pavement Needs – Planning Area 2 |
|---|-----------------|-----------------|-----------------|
| Need | Rural | Urban | Total |
| Bridges Currently 50+ Years | 107 | 652 | 759 |
| Bridges Reaching 50+ During Study Period | 1106 | 800 | 1906 |
| Bridges with Sufficiency Rating Below 50 | 89 | 47 | 136 |
| Percent of Interstate Miles with Pavement Rating Below 83 | 49% | 71% | 56% |
| Percent of Non-Interstate Miles with Pavement Rating Below 80 | 72% | 61% | 74% |

Planning Area 3

Planning Area 3 contains Alabama’s only coastal land. Mobile, which borders the Gulf of Mexico, is this region’s economic center. Freight moving through its busy port also affects the entire region by increasing truck traffic. In addition to the needed improvements around the port and the ThyssenKrupp development, Congress has earmarked planning funds for an extension of I-85 through the region. This corridor would continue from its termini in Montgomery to the Mississippi line and possibly further. Alabama’s so-called “Black Belt” spans the northern section of this region.
Planning Area #2 - Environmental Justice Areas

Legend

- Areas with Urban or Rural Transit Systems
 - Urban Transit System Presence
 - Rural Transit System Presence

Environmental Justice Areas (2000 Census)
- Concentrations of Poverty and Non-White Population Where Areas Exceed Alabama Averages

Roadway Network
- Interstate Highway
- Other State Route Network

Other Features
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT, US Census (2000) and Jacobs Carter Burgess

This map is intended for planning purposes only.
As illustrated in Figure 2.13, most of Planning Area 3 exceeds the statewide average for minority and poverty populations. Concentrations of minority and low-income populations are found throughout Sumter, Choctaw, Marengo, Clarke, Perry, Dallas, Wilcox, Monroe and Conecuh counties.

Future congestion in Planning Area 3 is projected to be equal to the statewide average, despite an increase in VMT in both urban and rural areas of 63 percent, which significantly exceeds the statewide increase of 48 percent. Truck traffic resulting from increases in activity at the Port of Mobile will also greatly impact the operation of the roadway network within this region. Model results predict truck percentages of 30 percent area-wide, which is higher than any other planning area.

Table 2.13 Operational Characteristics of Roadway Network – Planning Area 3

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Rural Road Miles</th>
<th>Urban Road Miles</th>
<th>Total Road Miles</th>
<th>Rural VMT</th>
<th>Urban VMT</th>
<th>Total VMT</th>
<th>Congested Road Miles</th>
<th>Change in VMT (2005-2035)</th>
<th>Percent Congested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate</td>
<td>139</td>
<td>64</td>
<td>203</td>
<td>8,743</td>
<td>5,529</td>
<td>14,272</td>
<td>106</td>
<td>62%</td>
<td>36%</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>550</td>
<td>160</td>
<td>710</td>
<td>7,768</td>
<td>4,132</td>
<td>11,900</td>
<td>105</td>
<td>55%</td>
<td>27%</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>830</td>
<td>144</td>
<td>974</td>
<td>6,225</td>
<td>2,051</td>
<td>8,276</td>
<td>28</td>
<td>68%</td>
<td>36%</td>
</tr>
<tr>
<td>Collector</td>
<td>465</td>
<td>4</td>
<td>469</td>
<td>1,967</td>
<td>27</td>
<td>1,994</td>
<td>8</td>
<td>49%</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>1,984</td>
<td>372</td>
<td>2,356</td>
<td>24,703</td>
<td>11,739</td>
<td>36,442</td>
<td>247</td>
<td>60%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Bridge and pavement needs in this region are lower than the statewide average. In order to ensure the efficient movement of freight through the region, continued efforts must be made to maintain the infrastructure throughout this region.

Table 2.14 Bridge and Pavement Needs – Planning Area 3

<table>
<thead>
<tr>
<th>Need</th>
<th>Rural</th>
<th>Urban</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges Currently 50+ Years</td>
<td>48</td>
<td>313</td>
<td>361</td>
</tr>
<tr>
<td>Bridges Reaching 50+ During Study Period</td>
<td>658</td>
<td>274</td>
<td>932</td>
</tr>
<tr>
<td>Bridges with Sufficiency Rating Below 50</td>
<td>44</td>
<td>21</td>
<td>65</td>
</tr>
<tr>
<td>Percent of Interstate Miles with Pavement Rating Below 83</td>
<td>50%</td>
<td>60%</td>
<td>52%</td>
</tr>
<tr>
<td>Percent of Non-Interstate Miles with Pavement Rating Below 80</td>
<td>76%</td>
<td>76%</td>
<td>76%</td>
</tr>
</tbody>
</table>

Planning Area 4

Planning Area 4 in the southwest portion of the state contains several urbanized areas including the state capitol, Montgomery. Located north of the Florida panhandle, this portion of Alabama is vital to the state’s emergency evacuation network. The potential extension of I-85 would also positively impact this region.

High poverty and minority communities are spread throughout Planning Area 4, as shown in Figure 2.14. The Black Belt, which defines the northern portion of this region as well, consists mostly of these populations, with the exception of Montgomery. Many of the affected counties do not currently offer rural transit systems, including Bullock, Butler, Coffee, Crenshaw, Dale, Henry and Montgomery.
This map is intended for planning purposes only. Source: ALDOT, US Census (2000) and Jacobs Carter Burgess.
As a percentage of its total road miles, Planning Area 4 is projected to experience the least amount of congestion in the state. The region’s rural VMT on collector roads is anticipated to decrease by 39 percent by 2035, playing a large part in this lower rate of congestion. Travel on the Interstates in both rural and urban areas, however, is expected to increase, resulting in congestion on 88 percent of the Interstate network.

Table 2.15: Operational Characteristics of Roadway Network – Planning Area 4

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Rural</th>
<th>Urban</th>
<th>Total</th>
<th>Rural</th>
<th>Urban</th>
<th>Total</th>
<th>Rural</th>
<th>Urban</th>
<th>Total</th>
<th>Percent Congested</th>
<th>Change in VMT (2005-2035)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate</td>
<td>95</td>
<td>67</td>
<td>162</td>
<td>5,021</td>
<td>5,792</td>
<td>10,813</td>
<td>69</td>
<td>49</td>
<td>118</td>
<td>51%</td>
<td>43%</td>
</tr>
<tr>
<td>Other Freeways</td>
<td>N/A</td>
<td>13</td>
<td>13</td>
<td>N/A</td>
<td>557</td>
<td>557</td>
<td>N/A</td>
<td>2</td>
<td>2</td>
<td>51%</td>
<td>20%</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>470</td>
<td>233</td>
<td>703</td>
<td>6,490</td>
<td>5,855</td>
<td>12,345</td>
<td>39</td>
<td>75</td>
<td>114</td>
<td>27%</td>
<td>34%</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>1,074</td>
<td>212</td>
<td>1,286</td>
<td>6,759</td>
<td>2,502</td>
<td>9,261</td>
<td>43</td>
<td>35</td>
<td>78</td>
<td>38%</td>
<td>50%</td>
</tr>
<tr>
<td>Collector</td>
<td>545</td>
<td>7</td>
<td>552</td>
<td>2,338</td>
<td>42</td>
<td>2,380</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>61%</td>
<td>74%</td>
</tr>
<tr>
<td>Total</td>
<td>2,184</td>
<td>532</td>
<td>2,716</td>
<td>20,608</td>
<td>14,748</td>
<td>35,356</td>
<td>163</td>
<td>161</td>
<td>324</td>
<td>50%</td>
<td>35%</td>
</tr>
</tbody>
</table>

Planning Area 4 contains the greatest percentage of Interstate miles below ALDOT’s preferred pavement rating, although non-Interstate miles rate better in this region than in the others. Bridge needs are similar to the statewide average.

Table 2.16: Bridge and Pavement Needs – Planning Area 4

<table>
<thead>
<tr>
<th>Need</th>
<th>Rural</th>
<th>Urban</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges Currently 50+ Years</td>
<td>104</td>
<td>254</td>
<td>358</td>
</tr>
<tr>
<td>Bridges Reaching 50+ During Study Period</td>
<td>613</td>
<td>404</td>
<td>1017</td>
</tr>
<tr>
<td>Bridges with Sufficiency Rating Below 50</td>
<td>20</td>
<td>22</td>
<td>42</td>
</tr>
<tr>
<td>Percent of Interstate Miles with Pavement Rating Below 83</td>
<td>33%</td>
<td>51%</td>
<td>36%</td>
</tr>
<tr>
<td>Percent of Non-Interstate Miles with Pavement Rating Below 80</td>
<td>78%</td>
<td>82%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Transit and Passenger Rail

Alabama has both urban and rural transit systems, with approximately 55 of its 67 counties having some type of public transit. ALDOT responsibilities for transit are specified in state and federal law and include planning as well as capital and operating funds grant program management and administration. Transit systems in the state also rely on MPOs and RPCs to assist with reporting and meeting state and federal requirements. Figures 2.11 through 2.14 identify each of the planning areas and the location of rural and/or urban transit. The maps also show concentrations of environmental justice communities. Planning area 1 (North Alabama) includes 11 rural transit systems and three urban transit systems. Planning area 2 (Central Alabama) includes the most counties of any planning area and has 17 rural transit systems and 3 urban systems within its borders. Planning area 3 (Southwest Alabama) has 12 rural transit systems and...
one urban transit system. Planning area 4 (Southwest Alabama) includes nine rural transit systems and five urban transit systems. Rural and urban transit systems serve the state’s growing population and travel demands.

The state has 13 urban area systems total, in Anniston, Auburn-Opelika, Birmingham, Decatur, Dothan, Florence, Gadsden, Huntsville, Lillian, Mobile, Montgomery, Phenix City and Tuscaloosa. These systems provide a variety of services targeted to meet local needs and, as urban systems, usually operate a mix of fixed route and demand response service. Service in larger urban areas is generally provided on a regular schedule along fixed routes, with paratransit service typically offered on a demand response basis to meet the requirements of the Americans with Disabilities Act (ADA).

Rural service transportation planning is administered through ALDOT’s Transportation Planning and Modal Programs Bureau. There are 29 rural systems operating demand response services. ALDOT works closely with the state’s transit system operations to assist with design and implementation of transit projects, performance and progress monitoring, and technical and general guidance for transit operators and local officials. The state also provides assistance with capital procurement processes, negotiating a statewide contract for transit equipment.

Major System Ridership

Transit systems can be characterized by various factors. Table 2.17 provides service area, ridership, and operational characteristics for each of the major systems. These characteristics give a better understanding of the number of people served in the area and size of the operations. The type of service, FR for fixed route and DR for demand response, is also listed.

<table>
<thead>
<tr>
<th>City</th>
<th>Service Area (sq miles)</th>
<th>Service Population</th>
<th>Annual Rider Trips</th>
<th>Maximum Vehicles Operated</th>
<th>Type of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birmingham (MAX)</td>
<td>186</td>
<td>662,047</td>
<td>3,833,954</td>
<td>99</td>
<td>FR/DR</td>
</tr>
<tr>
<td>Mobile (The Wave Transit System)</td>
<td>93</td>
<td>226,979</td>
<td>864,617</td>
<td>44</td>
<td>FR/DR</td>
</tr>
<tr>
<td>Montgomery (MATS)</td>
<td>135</td>
<td>201,568</td>
<td>907,999</td>
<td>36</td>
<td>FR/DR</td>
</tr>
<tr>
<td>Tuscaloosa (TMT)</td>
<td>1,340</td>
<td>168,908</td>
<td>141,624</td>
<td>14</td>
<td>FR/DR</td>
</tr>
<tr>
<td>Gadsden</td>
<td>55</td>
<td>73,300</td>
<td>105,100</td>
<td>7</td>
<td>FR/DR</td>
</tr>
<tr>
<td>Muscle Shoals (NACOLG)</td>
<td>186</td>
<td>81,360</td>
<td>210,569</td>
<td>54</td>
<td>FR/DR</td>
</tr>
<tr>
<td>Huntsville</td>
<td>66</td>
<td>127,000</td>
<td>397,016</td>
<td>30</td>
<td>FR/DR</td>
</tr>
</tbody>
</table>

14 The list contains 12 of the state’s urbanized area transit systems. PEX is not required to submit reports to the National Transit Database because they operate less than 9 vehicles; PEX service statistics provided by the Lee-Russell Council of Governments.

15 FR (fixed route) and DR (Demand Response).

16 A majority of the service is demand response operations with limited fixed route service.

17 NACOLG (Northwest Alabama Council of Local Governments) operates the region’s transit system.
Alabama Statewide Transportation Plan Update

<table>
<thead>
<tr>
<th>City</th>
<th>Service Area (sq miles)</th>
<th>Service Population</th>
<th>Annual Rider Trips</th>
<th>Maximum Vehicles Operated</th>
<th>Type of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auburn/Opelika (LRCOG) 18</td>
<td>609</td>
<td>115,092</td>
<td>104,140</td>
<td>16</td>
<td>FR/DR</td>
</tr>
<tr>
<td>Autauga</td>
<td>597</td>
<td>34,000</td>
<td>62,248</td>
<td>11</td>
<td>DR</td>
</tr>
<tr>
<td>Dothan (Wiregrass Transit Authority)</td>
<td>600</td>
<td>90,000</td>
<td>142,903</td>
<td>14</td>
<td>DR</td>
</tr>
<tr>
<td>Decatur (MCATS) 19</td>
<td>574</td>
<td>111,064</td>
<td>145,433</td>
<td>28</td>
<td>DR</td>
</tr>
<tr>
<td>Anniston (ACTS) 20</td>
<td>62</td>
<td>38,868</td>
<td>141,668</td>
<td>6</td>
<td>FR/DR</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7,057,271</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: 2005 National Transit Database

Rural Systems

Rural transit providers in Alabama depend primarily on local and federal transit funding sources for capital and operating assistance. Identifying sources of funding that can be used for transit operations is a challenge for the state’s leadership. The lack of funding inhibits efforts to expand transit and presents a challenge for maintaining the transit systems that currently exist. There are a number of smaller systems in the state, including those in the cities and towns of Albertville, Brantley, Bridgeport, Brundidge, Fort Deposit, Georgiana, Greenville, Gunterville, Troy and Tuskegee. Counties with transit services include Autauga, Bullock, Crenshaw, DeKalb, Escambia, Etowah, Greene, Hale, Jackson, Limestone, Lowndes, Madison, Marshall and Pickens. The location of these transit systems is illustrated in Figure 2.15.

Service in non-urbanized areas typically consists of a fleet of vehicles operating on a demand response basis, providing door-to-door service for transit dependent patrons between homes and key destinations such as government offices, shopping centers and medical facilities. Some of these destinations may actually be located in a nearby urbanized area. The size of these fleets varies significantly between jurisdictions, with a limited number of vans available to address the area’s rural public transportation needs.

Transit Services for the Elderly and Disabled

Alabama’s transit programs that provide services for the elderly and disabled are expected to receive annual funding of $1.6 million for FY2008-11, allocated from FTA under Section 5310 (formerly Section 16). These funds will be matched annually with $400,000 from local funds.

The funding facilitates the purchase of vans, buses, wheelchair lifts or accessibility packages for private non-profit corporations that provide transportation for the elderly and/or disabled. Public bodies that satisfy the state that private non-profits are not available in their respective areas are eligible to receive funding as well. Funding may also be used to purchase transportation services from public and private transportation providers.

18 LRCOG (Lee-Russell Council of Governments) operates the Auburn-Opelika, Lee and Russell counties transit system.
19 MCATS (Morgan County Area Transportation System) operates the Decatur and Morgan County transit system.
20 Source – East Alabama Regional Planning and Development Commission, 2/08.
Currently, there are more than 100 sub-recipients of this capital assistance funding, who provide elderly and disabled transit service in 61 counties. The six un-served counties are Bibb, Blount, Bullock, Conecuh, Marengo and Wilcox.
Figure 2.15

Legend

Areas Currently with Rural or Urban Transit Systems
- Urban Transit System Presence
- Rural Transit System Presence

Roadway Network
- Interstate Highway
- State Route / U.S. Route

Other Features
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT and Jacobs Carter Burgess
This map is intended for planning purposes only.
United We Ride

United We Ride (UWR) is a national initiative, authorized by Executive Order to develop an action plan for social service agencies to coordinate and improve service transportation planning, vehicle sharing, cost sharing, performance measures and evaluation, and simplify access for consumers. In addition, the UWR program has expanded to add technical assistance, education and outreach, and emergency transportation during evacuations.

The UWR program in Alabama was launched with the Governor’s Executive Order Number 28 in April 2005, which established a framework for this effort. The pilot program for UWR has been initiated in the Lee-Russell County area. The goal of the program is to coordinate transportation in the two-county area, bringing together a number of locally available resources to achieve a more cost efficient transportation service. If successful, the UWR strategy can be used as a model for other areas of the state. The strategy, modeled after the state’s own Action Plan, is included in the United We Ride Action Plan. The Lee Russell UWR Action Plan was jointly developed with local participating agencies and outlines the details of a cooperative transit program serving the need of the elderly and disabled. This UWR coordination effort identifies gaps in services, duplication of operations, unmet needs and barriers to service coordination. The UWR services are expected to deliver coordinated, cost effective and efficient services to individuals with lower incomes, older adults and people with disabilities.

Making Better Use

Throughout the state, people are commuting longer distances and living further from the most central urban areas. While it can be difficult and costly to offer transit options to increasingly dispersed communities, improvements can be made to join services, make the most of the existing networks and target expansion in a way that is viable and attracts new ridership.

Urban areas across the state are aware of the need for alternative transportation programs that provide options for better management of the existing infrastructure and facilitate access to business, educational and commercial activity centers. The increase in the cost of gasoline is expected to continue, encouraging the public to seek more economical means of travel, such as travel demand management options such as transit, carpools and vanpools where available.

Transit Needs

The state’s transit systems have capital and operations funding needs. Rural areas are especially in need of attention because alternatives are less available. Demand response services in areas with lower population densities will likely see increasing demand as the state continues to age and more emphasis is placed on the needs of the elderly. In order to ensure the transit system will meet future demands, additional funding options for transit will need to be identified.

The STIP contains many projects over the 2008-11 financial years, including the vital investment from FTA sections 5307, 5309 and 5311 for projects such as new buses, operational subsidies, transit for elderly and disabled people, and other enhancement schemes. During the four-year STIP period, transit projects total almost $353 million.

Extending the provision of transit services for elderly and disabled residents to the six counties currently without such services would, on the same basis as the FTA Section 5310 funding, require an additional $200,000 annually.
Vehicle renewal costs can be estimated based on FTA figures (Transit Bus Life Cycle Cost and Year 2007 Emissions Estimation, July 2007) which identifies purchase costs for 40ft diesel and compressed natural gas and hybrid vehicles, and gives operational costs over a 12-year life cycle. Replacement costs are $321,143 for Ultra Low Sulfur Diesel vehicles and $371,000 for compressed natural gas vehicles.

The National Transit Database details a total of 498 vehicles used in urban areas of Alabama, of which 117 have a seating capacity of 30 or more and would have an approximate replacement cost as per the 40ft vehicles featured in the FTA study. The remaining 381 have a seating capacity of between 14 and 30, which would have a typical replacement cost of $50,000.

Life expectancy for transit vehicles is likely to be 12 years for larger buses and 5 years for smaller vehicles. Therefore, during the 27-year plan period, the fleet of 30+ capacity buses is likely to need two replacements while the smaller vehicles would require up to five replacements. The anticipated costs for the larger buses are around $75,800,000 for replacement diesel vehicles or $87,600,000 for natural gas vehicles, and $95,250,000 for smaller vehicles. Thus, the total cost of renewing the Alabama urban bus fleet is upwards of $171,000,000 through to 2035.

Passenger Rail

Amtrak currently provides rail passenger service along one route through Alabama, the Crescent, which operates between New York City and New Orleans via Philadelphia, Baltimore, Washington, Charlotte and Atlanta. In Alabama, it stops in Anniston, Birmingham and Tuscaloosa as it follows a Norfolk Southern corridor through the state. Service is provided on a daily basis in both directions, stopping in Alabama around midday.

In 2006, Amtrak reported a total of 35,612 passengers boarding or alighting at Anniston, Birmingham and Tuscaloosa. A decrease in total ridership of almost 25 percent compared to 2005, the reduction can mostly be attributed to impacts from Hurricane Katrina. Crescent service was temporarily interrupted between Birmingham and New Orleans, and the Sunset Limited, which previously crossed southern Alabama with stops in Atmore and Mobile on its way from Orlando to Los Angeles, was suspended between Orlando and New Orleans. No decision has been made by Amtrak about reinstatement of the Orlando to New Orleans leg of the Sunset Limited.

ALDOT participates in the Southern Rapid Rail Transit Commission (SRRTC) which also includes the Louisiana and Mississippi Departments of Transportation. Between FY2001 and 2006, the SRRTC received federal appropriations totaling $6,700,000 to advocate and support regional passenger rail service. The federal funding required 100 percent state matching; state funds come from the Mississippi Department of Transportation (MDOT), the Louisiana Department of Transportation and Development (LADOTD), and the Alabama Department of Economic and Community Affairs.

High-speed rail is generally meant to encompass passenger service operating at a "cruising" speed of 125 mph (200 kph) or higher between station-pairs, where resulting downtown-to-downtown journey times are competitive with airplanes for business travelers. Studies have considered the Gulf Coast High Speed Rail System, the first phase of which will span the Gulf Coast states from Houston, Texas through New Orleans and Mobile to Pensacola, Florida. Planned expansions will extend service from New Orleans to Atlanta and from Pensacola to Jacksonville. Funding from the Federal Railroad Administration (FRA) and Amtrak has already been used for the elimination of hazards on the Gulf Coast route. The alignments of these corridors are not finalized, and currently the Gulf Coast Corridor primarily utilizes the CSX track.
between Mobile and New Orleans and the Norfolk Southern track between New Orleans and Atlanta. These corridors are among the highest density freight routes in Alabama for both CSXT and Norfolk Southern, respectively.

The Birmingham Long Range Transportation Plan also notes that Jefferson County is pursuing a high-capacity commuter rail transit project outside of the Section 5309 process. It suggests that, upon identifying and securing a federal funding source, the project may be placed into the LRTP.

Rail/highway safety is also an important issue. With 5,922 railroad crossing across the state, of which 5,238 are at-grade, there is a danger for motorists crossing the rail lines. To help improve safety, a database has been introduced to help asset management of rail/highway crossings. The system stores photographs of each at-grade crossing in the state and enables them to be cross-referenced with data required by the FRA and with average daily traffic data. In FY2006, Alabama authorized 25 rail/highway safety projects costing a total of $3.8 million, with a further 14 projects authorized between Birmingham and Chattanooga with Norfolk Southern Railroad.

Passenger Rail Needs

In its Briefing for Congress (March 2007), the Southern Rapid Rail Transit Commission estimates needs thus far on the Gulf Coast High Speed Rail Corridor between New Orleans and Meridian, Mississippi via Birmingham of $114 million. The section between New Orleans and Mobile is estimated to require $260 to $450 million.

Replacement of at-grade rail crossings with underpass or bridge alternatives can be very costly, with estimates of $5 million for a new underpass and $4 to $40 million for new bridges, depending on rural or urban locations and the size of roads involved. Smaller scale improvements can range from $100,000 to $150,000 and upwards. Continuing an annual program of around $3.8 million for 25 small-scale crossing improvements would enable safety improvements at some 700 crossings, around 13 percent of the total at-grade crossings in the state.

Light Rail

Judged by ridership, environmental impacts, and farebox cost-coverage ratios, light rail is an increasingly attractive and significant alternative to bus transit, including dedicated busways. In its Transit Development Plan, Birmingham’s vision for the MAX transit system for the next five to ten years includes light rail transit. Montgomery also has aspirations for a light rail system serving the downtown area and bringing potential development opportunities. Light rail projects have the advantage of being relatively less expensive than heavy rail for implementation and can be more easily accommodated into an urbanized area setting due to their ability to operate in mixed traffic.

Bicycle and Pedestrian Systems

Bicycling and walking are becoming increasingly popular across the nation and around Alabama as viable modes of transportation for a variety of reasons. In urban areas, roadway congestion, lack of parking and short trip distances combine to create an excellent opportunity for trips of this nature, particularly given Alabama’s generally favorable topography and climate. Bicycling and walking for commuting and personal trips provide an enjoyable, efficient, and environmentally friendly method to incorporate exercise into hectic schedules.
Current SAFETEA-LU legislation continues the emphasis on bicycle and pedestrian modes of previous transportation laws. In addition, the current federal law has introduced a Safe Routes to School Program with the primary aim of encouraging children to walk and bicycle to school. The purpose of this program is to make walking and bicycling safer and more appealing as a means access to school. The program apportions funds to states based on the amount of enrollment in primary and middle schools. In addition, federal legislation permits bicycle and sidewalk facilities to use Congestion Mitigation/Air Quality (CMAQ) and Transportation Enhancement Activity (TEA) funds for implementation. Other federal aid funds can be used as appropriate. A statewide bicycle and pedestrian planning effort will be started in 2008 by ALDOT and will address statewide needs as well as include each urbanized area’s plan for bicycle and pedestrian facilities.

The level of bicycle and pedestrian facilities varies among Alabama’s urban areas. Some metropolitan areas have few or no separate bicycle facilities while areas have many, such as Montgomery’s 358 miles of bicycle facilities. In general, most bicycle and pedestrian facilities are concentrated in the downtown areas, but facilities do exist outside of the most built-up areas; examples include:

- Approximately 85 miles of roadway in Auburn and Opelika has sidewalks on either one or both sides of the street, and there are nearly 21 miles of bicycle facilities in Auburn designated by signage, striping, or separated grade facilities such as multi-use paths.
- In many of the Central Business Districts in the MPO areas, most signalized junctions are equipped with pedestrian signals and crosswalks to assist in the safe movement of pedestrians.
- Montgomery Area Transit System (MATS) buses have bike racks on the 30ft and 35ft buses that operate on fixed routes. MATS is also keen to facilitate passenger access to buses and bus transit stops and is in the first phase of installing benches along some of the fixed routes of the transit system, with the goal of all fixed routes having access to benches and shelters.
- The Calhoun area is served by the Chief Ladiga Trail, the premier rail trail in the State of Alabama. The trail enters the study area at its northern boundary and runs parallel to Alabama Highway 21 for approximately 8.3 miles to its terminus at Woodland Park in north Anniston. The Chief Ladiga Trail serves pedestrians, bicyclists, wheelchairs, strollers, and inline skaters.
- The City of Florence has developed a series of pedestrian and bicycle trails along the banks of the Tennessee River.
- An 8ft wide multi-purpose trail was constructed at the University of South Alabama in Mobile as part of a road widening project.

In urban and suburban areas where there may be a range of local facilities and services that are accessible by bicycle or on foot, there are historically low levels of non-motorized travel. For example, according to U.S. Census 2000 data, metropolitan Birmingham ranks 271st out the nation’s 280 Metropolitan Statistical Areas in terms of the percentage of the population that bikes and/or walks to work, which is lower than any other metropolitan area with a population of 500,000 or more.21

The importance of good multimodal street design as a means of improving mobility is becoming more widely understood and more readily embraced as part of the planning process. It cannot, however, be over-emphasized and adequate provisions for all modes should be considered for projects where

appropriate. The “complete street” concept incorporates this approach to maximizing the multimodal functionality of facility improvements.

Local policies are making headway, promoting bicycle and pedestrian facilities in the MPO areas. However, there are often differences in execution that can lessen the impact of such policies. For example:

- In the Mobile MPO area, the jurisdictions differ on their requirements for sidewalks in their subdivision regulations. The cities of Chickasaw, Mobile and Prichard require sidewalks on major streets, highways, and secondary streets when a subdivision is developed. In contrast, the City of Saraland does not require sidewalks, but regulations specify a minimum sidewalk width of 4 feet in residential areas and 7 feet in commercial areas when they are installed. Additionally, Mobile County has no requirement for sidewalks in its subdivision regulations. The City of Mobile’s current policy is that sidewalks/trails be included in all road widening projects when feasible.

- The Birmingham MPO is increasingly working to encourage bicycle and pedestrian facilities in the design of roadway projects, with a Livable Cities Program that offers financial assistance to communities for sidewalk construction. The Regional Planning Commission of Greater Birmingham also continues to work closely with area jurisdictions to ensure the vision for a regional bicycle and pedestrian network is developed in a coordinated manner, and to work with local governments to ensure the inclusion of bicycle and pedestrian provisions in comprehensive plans, subdivision regulations, and zoning ordinances.

- The City of Opelika does not have a specific provision to provide sidewalks when widening local roads, though it may be considered, and sidewalks are optional for new developments. The City of Auburn considers putting in sidewalks when it performs road resurfacing, and new developments are required to provide sidewalks.

All of the urbanized transportation study areas have a bicycle and pedestrian component in their long range transportation plans. A synopsis is included in Appendix A – Metropolitan Planning Organization Profiles.

Bicycle and Pedestrian Stakeholder Input to the SWTP Update

The SWTP update included participation of the Alabama Bike Coalition (ABC), a statewide group that includes the Spring City Cycling Club (Huntsville), the Birmingham Bicycle Club and the Montgomery Bicycle Club as participating members. The Spring City Cycling Club included notification of the availability of the draft SWTP update for comment on its web site, and ABC’s comments were considered and incorporated as appropriate into the SWTP final document. Among the comments submitted were route specific recommendations for bike facilities in Monroe County, recommendations for better bicycle and pedestrian signage, recommendations to make more use of the “complete street” concept when improving facilities or designing new facilities, and the clear expression of a desire for the state to have a Bicycle and Pedestrian Plan. The bicycling community provided comments throughout the SWTP update process recommending bicycle and pedestrian improvements that will be compiled and submitted to ALDOT planners.

Safe Routes to Schools

Signed into effect by SAFETEA-LU in 2005, the Safe Routes to Schools (SRTS) program focuses on encouraging children, including those with disabilities, to walk and bicycle to school. SRTS funds can be
allocated to a variety of projects including capital improvements, educational programs and outreach efforts. These funds are distributed through ALDOT’s Bureau of Multimodal Programs and are available for schools offering kindergarten through eighth grade curriculum.

To be eligible for SRTS funding, a project must meet various criteria. Infrastructure projects such as sidewalks, bike paths, crosswalks and other construction or operational improvements must be located within two miles of an elementary or middle school. Projects cannot exceed a total of $150,000, but can apply to more than one school. In order to ensure the equitable distribution of funds, applicants must define their status as either urban or non-urban. Table 2.18 details the recent funds allocated through the SRTS program, as well as those projected to be available in the near future.

Table 2.18 Safe Routes to School Apportionments (2005-2009)

<table>
<thead>
<tr>
<th>Year</th>
<th>Apportionment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>2006</td>
<td>$1,313,659</td>
</tr>
<tr>
<td>2007</td>
<td>$1,767,375</td>
</tr>
<tr>
<td>2008</td>
<td>$2,199,717</td>
</tr>
<tr>
<td>2009</td>
<td>$2,751,297</td>
</tr>
<tr>
<td>Total</td>
<td>$9,032,048</td>
</tr>
</tbody>
</table>

Source: FHWA Safe Routes to School Web site

ALDOT is working together with the ABC to implement the SRTS program. The ABC has initiated instructional courses to educate the public and train Licensed Certified Instructors to instruct school children on safe walking and bicycling to schools. The partnership with the ABC is expected to encourage expansion of the SRTS in school systems.

Freight

In order to sustain Alabama’s economy and ensure financial viability for the future, the transportation system must serve the needs of the freight industry. The ability to safely and efficiently move goods across the state is an essential function of the transportation system. In addition to the highway system, Alabama’s freight network consists of ports and waterways, railroads, airports and Intermodal facilities. Freight planning efforts focus on maintaining and improving connections to freight facilities and enhancing the flow of freight throughout the state.

Ports and Waterways

Currently, ALDOT has no funding or oversight responsibilities for the state’s ports and waterways. The role that ALDOT plays in furthering waterborne commerce and activities is in providing and maintaining adequate Intermodal connections. This is a critical responsibility due to the increasingly interconnected nature of the state’s transportation system. Alabama’s ports and waterways system requires seamless connections with the highway and railroad systems to maximize the efficient Intermodal transfer of goods.

22 Projected estimated apportionments for Alabama.
ALDOT has an established working relationship with the agencies overseeing the state’s ports and waterways and coordinates with these agencies about traffic concerns and access needs.

Port of Mobile

The Port of Mobile is the only deep water port in the state and a major player on the world trade market. The port is the 11th busiest port in the nation, the world’s largest forest products terminal, and the nation’s greatest wood pulp exporter. According to the US Army Corps of Engineers Waterborne Commerce Statistics Center, the Port of Mobile managed a throughput of 57.6 million tons of freight in 2005. In 2006, the Alabama State Port Authority (ASPA) reported handling 68,823 twenty-foot equivalent units (TEUs) of containers, and had $89.5 million in revenue.

According to preliminary estimates developed for an economic impact analyses being performed by ASPA, the Port of Mobile supports the jobs of more than 92,250 Alabamians. Annually, the port generates over $10.5 billion in statewide economic benefit, including state and local tax coffers of almost $120 million.

The Port of Mobile is a fast growing facility. Over the next five years, the port expects to ship an additional 150,000 containers, 200,000 tons of steel articles, 13,000 rail cars, and 12 million tons of steel (destined for the new ThyssenKrupp development). Each of these increases will require additional transportation infrastructure in the form of roadways and rail.

Inland Waterways and Docks

Alabama has approximately 1,500 miles of navigable inland waterways along six corridors, giving it the second longest such system in the United States. These water corridors connect to over 15,000 miles of inland waterways in 23 states via the Tennessee-Tombigbee Waterway and the Gulf Intracoastal Waterway. As shown in Figure 2.16, 11 state-managed dock facilities, as well as 7 other facilities owned and operated by local governments or private interests, are located along these waterways. Table 2.19 lists the 11 docks currently in the system, along with their associated acreage. All waterways and the associated locks and dams are operated by the US Army Corps of Engineers.

Table 2.19 Inland Docks, Locations, and Acreage

<table>
<thead>
<tr>
<th>City</th>
<th>Body of Water</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis</td>
<td>Mobile River</td>
<td>6</td>
</tr>
<tr>
<td>Bridgeport</td>
<td>Tennessee River</td>
<td>14</td>
</tr>
<tr>
<td>Clai borne</td>
<td>Alabama River</td>
<td>54</td>
</tr>
<tr>
<td>Columbia</td>
<td>Chattahoochee River</td>
<td>59</td>
</tr>
<tr>
<td>Cordova</td>
<td>Black Warrior River</td>
<td>60</td>
</tr>
<tr>
<td>Demopolis</td>
<td>Tombigbee River</td>
<td>15</td>
</tr>
<tr>
<td>Eufaula</td>
<td>Chattahoochee River</td>
<td>13</td>
</tr>
<tr>
<td>Montgomery</td>
<td>Alabama River</td>
<td>32</td>
</tr>
<tr>
<td>Phenix City</td>
<td>Chattahoochee River</td>
<td>110</td>
</tr>
<tr>
<td>Selma</td>
<td>Alabama River</td>
<td>37</td>
</tr>
</tbody>
</table>
Needs Assessment: Ports and Waterways

As previously mentioned, ALDOT's role in improving the movement of waterborne freight consists of ensuring the efficient access to and from port and dock facilities. The Port of Mobile has experienced substantial growth in containerized cargo over the past three years due to the increased demands of statewide manufacturing. This growth, combined with the Port of Mobile expansion set to open in late 2008, will place increased demands on the infrastructure surrounding these facilities. It is, therefore, important to Alabama's continued growth to invest in highways that provide added freight capacity and facilitate access to state ports.

One of the highway corridors most obviously affected by increases in containerized freight from the Port of Mobile is I-10. Though the corridor spans only a small portion of the state, it provides essential access to and from the port. This Interstate also reaches far beyond Alabama's borders, from Los Angeles, California to Jacksonville, Florida, making it a vital corridor for international goods movement. Capacity improvements, including interchange improvements and bridge expansions, should be completed where necessary to improve the movement of freight.

Another Interstate that serves a great amount of existing traffic from the ports is I-65, which provides the north-south connection through the state and beyond. This corridor, already experiencing congestion between Mobile, Montgomery and Birmingham, will need improvements to sustain the projected growth.

In addition to improvements on existing freight corridors, opportunities to expand upon the freight network should be explored. The construction of new facilities or expansion of existing roadways would provide alternate routes, which would mitigate congestion and ensure the efficient movement of goods in and out of the Port of Mobile. A north-south connection along the western portion of the state has been mentioned in other studies as a possible route to relieve congestion along I-65. The western north-south route could be a new road or improvements along the existing State Route 43.
Figure 2.16

Legend
Navigable Waterways & Dock Facilities
- Inland Dock / Port Facility
- Coastal Dock / Port Facility
- Navigable Thoroughfare
- Intermodal Facilities
 - Intermodal Facility
 - Intermodal Connector

State Roadway Network
- Interstate Highway
- State Route / U.S. Route

Other Features
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT, Alabama Port Authority and Jacobs Carter Burgess

This map is intended for planning purposes only.

June 2008
Railroads

Alabama has an extensive system of rail network, with all major cities and many smaller cities located on or near a railway. The majority of rail in Alabama is used for freight service. As such, ALDOT works with the railroads to identify projects that ensure safety and efficiency in rail operations. This is achieved, in part, through the development and implementation of the Alabama Rail Plan. The plan is currently being updated and will examine the existing system, its operations and the need to improve safety as well as intermodal connectivity.

Railroad operations in Alabama have historically been oriented to the movement of goods between major population centers and port cities along the Gulf Coast. Through the years, those routes radiating out from the land-water transfer points have been integrated into a much more comprehensive rail network. The production of large quantities of bulk commodities in the Birmingham area has resulted in the development of the city as a key railroad hub for Alabama and the entire Southeast region. Figure 2.17 shows the state’s railroad network.

According to the Association of American Railroads, a total of 98.2 million net tons of traffic either originated or terminated in Alabama in 2005. The most common materials were coal, nonmetallic minerals, pulp and paper, glass and stone, and metallic ores. An additional 77 million tons of traffic simply traveled through the state, most commonly coal, metallic ores, forest products, and petroleum.

In recent years, intermodal freight has become more popular as a way of cutting costs and providing more reliable, on-time shipping. Intermodal systems typically are focused around a railroad or port facility and are supported by truck freight. Alabama has 13 intermodal facilities located around the state, with the biggest concentration located near the Port of Mobile.

Alabama has had a very low abandonment rate in the past several years; however, as the cost of maintaining tracks increases, abandonment has become a major issue facing the state. Since the 2001 Rail Plan, the state has recorded 107.1 miles of tracks that have officially been abandoned. Between 1971 and 1992, 80 rail line segments totaling 1,254 miles were abandoned in the state.

Major Developments and Rail Service

There are several major developments proposed in Alabama which will, or already do, rely heavily on the railroad, including expansion of the Huntsville Intermodal Terminal, expansion of the Port of Mobile, ThyssenKrupp’s Steel Plant, and the EADS/Northrop Grumman Aircraft Assembly Plant. As they are built or expanded, the demand on freight will increase. In response, CSX, BNSF, and Norfolk Southern will be expanding their freight services by the end of 2008. Plans are already in place for Norfolk Southern to add additional side tracks in the area around the new ThyssenKrupp Plant.

Needs Assessment: Railroads

Due to the anticipated growth in freight demand, rail transportation will become increasingly vital to Alabama. The construction of the ThyssenKrupp plant, expansion of the Port of Mobile and overall growth in freight movement nationwide will greatly impact the rail system. Improvements to the rail network are necessary to prepare for this growth.

Another issue facing the railroad industry is the abandonment of rail lines throughout the state. Alabama’s 2001 Rail Plan provides descriptions of the Surface Transportation Board’s alternatives to rail
abandonment, such as forced sale or subsidy of lines slated for abandonment and allowing class exemptions on purchased rail to encourage continued service. These strategies and others should be employed to mitigate the issues that could lead to rail abandonment.

Aviation

Aviation is critically important to Alabama’s future economic development as it constitutes an important mode of long-distance passenger travel and is a key component of the goods movement network. Alabama’s airport system consists of over 200 registered airfields, of which 84 are publicly-owned public use facilities and 8 others are privately-owned public use facilities. Six of the publicly owned airports have regularly scheduled commercial service. Figure 2.18 illustrates the location Alabama’s airport facilities.

Airports in Alabama are classified according to size and functionality. International airports are typically the largest facilities and play a key role in the state’s aviation system, serving both national and international markets with passenger and cargo service. National service facilities serve the largest general aviation aircraft and commercial operations. National airports have regularly scheduled flights that serve as part of the national commercial airport network and are usually located close to large cities that can provide enough passengers to sustain operations. Slightly smaller than the commercial service facilities but still serving a national market through general aviation operations, general aviation regional airports have facilities capable of serving small jets but are located in areas where the market is not sufficient for commercial service. These airports are important because they serve the nation’s growing number of business aircraft. Serving the same type of operations but on a smaller scale, general aviation community airports provide facilities for small businesses, personal flying, and recreational use, serving local needs throughout the state. The final type is local airports, which serve only recreational and local trips. They typically have shorter length runways and are only suitable for use by piston aircraft.

Statewide Airport System Plan

The State Aeronautic Bureau maintains and regularly updates a State Airport System Plan. This plan, which was last updated in 2003, inventories the current condition of the network and outlines a program of projects to improve the system. The plan also evaluates funding sources to develop a constrained program of projects for the next ten years.

Commercial Airports

Airports which provide commercial service are typically the largest airports with the longest runways and most advanced facilities. Alabama has six commercial service airports, located in Birmingham, Dothan, Huntsville, Mobile, Montgomery, and Muscle Shoals.

Birmingham International Airport has current plans for a $20 million air cargo expansion to include adding 400,000 square feet to the cargo facility, which would enable five planes to be served at one time. The other major project planned for the airport is a 2,000-foot extension for Runway 6/24, bringing it to 12,000 feet in length. Completion is scheduled for 2007 with a budget of around $43 million. Security is provided through the Birmingham Airport Police.
Alabama Railroad Facilities by Class*

- **Class I Railroad** - As defined by the Surface Transportation Board, a railroad with operating revenues of at least $319.3 million.
- **Class II Railroad** - A railroad with operating revenues between $25,546,047 and $319,325,584
- **Class III Railroad** - A railroad with operating revenues below $25,546,047

*Note:

Class I Railroad - As defined by the Surface Transportation Board, a railroad with operating revenues of at least $319.3 million.
Class II Railroad - A railroad with operating revenues between $25,546,047 and $319,325,584
Class III Railroad - A railroad with operating revenues below $25,546,047

Legend
- Intermodal Facility
- Intermodal Connector

Alabama Railroad Facilities
Class I
Class II
Class III

Intermodal Facilities
- Intermodal Facility
- Intermodal Connector

Other Features
- Interstate Highway
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT, AAR, and Jacobs Carter Burgess

This map is intended for planning purposes only.

June 2008
Alabama Statewide Transportation Plan Update

Figure 2.18

Legend

Airport Types
- Red: Commercial Aviation
- Blue: General Aviation

Intermodal Facilities
- Green: Intermodal Facility
- Purple: Intermodal Connector

State Roadway Network
- Black: Interstate Highway
- Orange: State Route / U.S. Route

Other Features
- Black: Planning Area Boundary
- Light Gray: County Boundary
- Dark Gray: Urbanized Area
- Blue: Lakes

Source: ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.

June 2008
Huntsville International Airport is fortunate to be located in an area with highway and rail access and has recently emphasized efforts to accommodate the growing cargo transport market. The nearby Jetplex Industrial Airpark has direct access to the airport as well as the nearby railroad and Interstate facilities including an NHS Intermodal Connector. In 2006, 152,400,800 pounds of cargo passed through the airport. The 4,000-acre airpark has Free Trade Zone (FTZ) designation, which encourages cargo trade through tax incentives for inbound and outbound products. Significant cargo space is available on-field. The airport’s International Intermodal Center offers nearly 1,000,000 square feet of cargo ramp space and 200,000 square feet of storage space. Regular flights arrive from various carriers. Future capital improvements include extending Runway 18L/36R to 12,600 feet, a new air traffic control tower, continued growth of Jetplex, and continued expansion of the International Intermodal Center.

The 2030 Pipeline Transportation Plan identifies a need to develop a petroleum pipeline to serve North Alabama. This pipeline is important to the Huntsville airport because it will provide reliable fuel service for aircraft, which are currently served by tanker trucks traveling from Birmingham. Security is overseen by the Department of Homeland Security and is managed by the airport’s Public Safety Department.

The largest employer in Mobile County, Mobile Aerospace Engineering, is located at the airport. There are plans for a new facility which will assemble and modify airborne refueling tankers. This facility would be designed and maintained by EADS North America and Northrop Grumman. Final location decisions will be based on the awarding of the tanker program contract. If awarded to EADS, the facility would eventually employ over 1,000 people. Another possibility for economic development for Brookley Field may come from marketing the site of the old warehouses for freight shipments coming into the Mobile Container Terminal at Choctaw Point.

The Northwest Alabama Regional Airport has applied for and received FTZ status, allowing special taxation laws to apply to cargo entering and leaving the country, which is beneficial for businesses in the Shoals Research Airpark. Security is provided by Muscle Shoals Police Department.

General Aviation Facilities

The six commercial service facilities typically get more focus because of their ability to provide transportation connections, bring visitors to the area and direct ticket sales, but the backbone of the system is the 78 general aviation facilities located across the state. These facilities serve as places where business jets can easily land, future pilots can conduct their training, and locals can base their aircraft. While not receiving the attention and recognition that the commercial carrier airports receive, the general aviation facilities serve as a major transportation connection and help grow business in the communities near the facility.

These aviation facilities typically are not located in rural areas. Almost every medium and large city that does not have a commercial service airport has a general aviation field. The cities of Auburn, Tuscaloosa, Gulf Shores and Anniston all have general aviation facilities that are key to growing business and increasing tourism for those locales. These facilities are often funded by the local government with some support from the state and federal governments.
Airports and Business

Airports have a direct effect on businesses located nearby, as well as on economic development in the surrounding region. A study completed in 2003 found that one out of every three people employed in the state worked for a company that directly uses aviation in its business. The aviation system has a nearly $6.5 billion impact on the state in both direct and indirect impacts. Regional and national businesses use airports as a method of efficient transport of executives to various offices in a time-effective manner. Airports also are becoming essential elements of community economic development efforts. An effective airport will spur cargo facilities and the aviation related businesses that are clean and desirable employers essential to a well-rounded local economy.

The level of aviation facilities available determines the type of aircraft attracted to a community airport. In particular, the length of runway will dictate whether an airport can accommodate business or solely recreational aircraft. For the most part, business aircraft need at least 5,000 feet of runway. There are currently 41 airports in the state with a primary runway length of at least 5,000 feet. Development opportunities around airports that can accommodate business aircraft will more likely be employer related as businesses become globally oriented.

The use of land in the vicinity of an airport is an important factor in determining the airport’s community impact. Land around older airports is typically residential and other low value uses. As airport operations increase, residential concerns regarding the constant noise created by operating aircraft often lead to changes in airport operations, flight patterns and even locations. The lack of expansion opportunities is another issue facing airports surrounded by major residential development. As airports grow, land is needed to develop cargo facilities and aviation related businesses. Appropriate zoning policies help prevent further development around airports and reserve land for aviation and compatible uses.

Security

After September 11, 2001, security has increased significantly in the aviation field. As a result, in 2005 the Aeronautics Bureau began requiring airports to prepare and implement written security plans. These plans must be on file with the Aeronautics Bureau in order for the airport to receive state funding for improvements. Plans should include general security procedures as well as procedures for evacuations, severe weather and security threats.

Commercial airports have federally mandated security procedures with specific guidelines monitored and enforced by the Transportation Security Administration (TSA). Each airport is responsible for the general security of the facility as well as controlling access. The TSA is typically responsible for baggage and passenger screening.

Needs Assessment: Aviation

Alabama, like many states, has a serious shortfall when it comes to aviation funding. The 2003 System Plan reported that the state spends nearly three times less money on aviation than neighboring Mississippi and significantly less than neighboring Tennessee, Georgia and Florida. A study completed by the Aeronautics Bureau in 2007 found that $232.9 million will be needed to adequately maintain the state’s aviation infrastructure through 2016. This includes $115.7 million for pavement rehabilitation and maintenance, $1.3 million for lighting, $57.2 million for terminal area development, $7.8 million for safety upgrades and planning, and $50.9 million for capacity enhancements.
Federal funding allocated to the state for aviation capital projects has been unpredictable, varying significantly each year. Discretionary funds must be used to fund projects that are pre-qualified by the FAA. The majority of funding for this program is collected through a ticket tax levied on each scheduled service airline ticket. Some of the money generated by this tax is returned to the commercial airports and the remaining money is distributed on a competitive basis. In the 2006 fiscal year, the FAA issued a total of $49.3 million in airport improvement grants statewide. Of these grants, approximately 61 percent or $30.2 million went to the six commercial airports, with the remainder allocated to funding for grants at 49 airports. Under the current Federal Airport Improvement Plan, the FAA will fund a significant portion of eligible airport improvement projects. Legislation allows for federal funds to be used for 95 percent of the project with a 5 percent local match. The local match can be split evenly with the state so that each matches 2.5 percent of the total project cost.

State funds provide monies for planning, engineering and construction at the publicly owned airports. Funding for these grants comes from the Airport Development Fund (ADF) and the Surplus Military Fields Fund (SMFF). ADF funds are generated through the sale of aviation fuel. Alabama charges an excise tax on both avgas and jet fuel. The tax rate is set each year by the Department of Revenue and has a revenue cap set by the State Legislature at $600,000. Money for the SMFF comes from the revenue generated by former airfields that are currently owned by the State. Revenue generated through interest or leases is used to fund eligible airport projects.

In the 2006 fiscal year, the tax rate for aviation fuel was $0.027 per gallon for aviation fuel and $0.009 per gallon for jet fuel. The State collected $546,311 for the year through these sources, which is $121,344 less than the amount collected in the 2005 fiscal year. For FY2006, the SMFF had an approximate market value of $9 million placed in interest bearing accounts, which earned $178,246 throughout the year. The two funds allowed for $864,596 to be used on airport capital improvement projects in FY2006.

Many airports are owned and operated by airport authorities with the authority to condemn property and issue bonds. Local funding typically comes from general revenue funds and airport-generated revenue, which are usually fairly small and do not meet the needs of the airport program.
3. TRANSPORTATION RELATED ISSUES

Public and stakeholder comments raised concerns about the transportation system. Several suggestions for programs and transportation improvements were raised. Access management and concerns for economic development were repeated at public meetings and in comments sent into the study team. Recognizing that many transportation improvements could not be accomplished in the short term, commentators recommended that the Department maximize the traffic operations capacity of existing roadways. There was also strong sentiment for the transportation program to support economic development objectives.

The environment is considered throughout the planning, engineering and implementation of transportation projects. The transportation program has done much to preserve wetlands and historic resources in the state. The priority of the environment to participants was repeated often during the SWTP update.

Access Management

Access management is an important transportation planning tool. By applying standards which control the location and design of access from roadways to adjacent land uses, jurisdictions can improve mobility and safety. As population growth continues to add vehicles to Alabama’s roadways, such improvements will be necessary to maintain efficient operations.

Access management provides both safety and mobility benefits. One strategy, limiting turning opportunities, has been shown to reduce both vehicular and pedestrian crashes. Studies have also shown increases in levels of service on roads implementing access management standards due to the reduced number of turning conflicts and improved operating conditions.

With the backlog of roadway needs, access management can provide Alabama with a cost-effective way to combat congestion, and its implementation should be encouraged throughout the state. ALDOT is currently in the process of developing statewide access management guidelines. Once this task is completed, efforts should be focused on educating planning agencies statewide. The importance of this effort is such that ALDOT may want to assign a focus within the organization to act as the resource for access management issues.

Economic Development

Strategic Corridors

The linkage of transportation to economic development is well understood. Alabama has several nationally and regionally designated corridors, primarily formed from the main highways and Interstate routes, that provide important strategic connections to major cities and areas for employment, education, leisure and other services. These corridors are also key connectors with the neighboring states of Florida and Georgia to the east, Mississippi to the west and Tennessee to the north. Figure 3.1 shows corridors that serve economic and mobility functions for the state.
Key Economic Corridors*

Legend
Key Economic Corridors
Congressional HPCs**
- HPC Number 6
- HPC Number 7
- HPC Numbers 10 & 45
- HPC Number 11
- HPC Number 28

Other Corridors
- US Highway 84 (El Camino Real)
- West Alabama Corridor Feasibility/Alignment Studies
- Montgomery to I-10 Corridor Feasibility Study
- Montgomery Outer Loop and Tuscaloosa Eastern Bypass

State Roadway Network
- Interstate Highway
- State Route / U.S. Route

Other Features
- Planning Area Boundary
- County Boundary
- Urbanized Area
- Lakes

Source: ALDOT, aaroads.com, and Jacobs Carter Burgess
This map is intended for planning purposes only.

Montgomery to I-10 Corridor Feasibility Study
West Alabama Corridor Feasibility/Alignment Studies
Montgomery Outer Loop and Tuscaloosa Eastern Bypass

**Note
HPC 6 - Proposed I-85 extension Montgomery to Mississippi State line.
HPC 7 - Selected alignment as shown.
HPC 10 & 45 - Selected alignment as shown (potential I-22).
HPC 11 - Also Appalachian Regional Commission (ARC) Corridor V.
HPC 28 - Birmingham Northern Beltline.

*Note
Congressional High Priority Corridors (HPC) reflect a series of major highway bills passed by US Congress since 1991. To date, there are a total of 80 HPCs. Specific alignments often not yet selected for uncompleted HPC segments and corridor feasibility studies.

June 2008
High Priority Corridors

High Priority Corridors (HPC) have been identified in federal legislation starting with ISTEA in 1991 and continuing through to the current SAFETEA-LU in 2005. These high priority corridors represent routes of national importance and are designated by Congress. Currently there are over 80 corridors and sub-corridors nationwide, of which the following 6 cross Alabama:

- HPC 6 – Meridian, MS east to Savannah, GA
- HPC 7 – Memphis, TN to Atlanta, GA and Chattanooga, TN
- HPC 10 – Birmingham to I-55 in Mississippi
- HPC 11 – Batesville, MS to Huntsville
- HPC 28 – Birmingham Northern Beltline
- HPC 45 – Memphis, TN to Birmingham

HPC 6

HPC 6 is an important route crossing Alabama’s Black Belt, the State Capitol in Montgomery and many sites of historical importance such as Selma. The route travels through Alabama following US 80 from Meridian, Mississippi to Montgomery via Demopolis and Selma; I-85 from Montgomery to Auburn-Opelika; and US 280 from Auburn-Opelika to Columbus, Georgia.

Montgomery is the major economic center along this corridor and is an Urban Enterprise Zone, resulting in state tax and non-tax incentives. It is also home to Hyundai’s first assembly and manufacturing plant in the United States, a $1.4 billion automotive plant that is one of the most advanced assembly plants in North America. It employs a workforce of more than 3,300 and has an estimated annual production of 300,000 vehicles and engines. HPC 6 also provides important access to educational facilities, with campus locations for Auburn University (AU) and Auburn University in Montgomery (AUM) having an enrollment of 24,000 students and an estimated $1.5 billion impact on the economy.

Table 3.1 High Priority Corridor 6

<table>
<thead>
<tr>
<th>Principal Cities (west to east)</th>
<th>Miles from Western Alabama Side of Corridor (Cuba, AL)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Meridian, MS</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Selma</td>
<td>84</td>
<td>46,365</td>
</tr>
<tr>
<td>Montgomery</td>
<td>135</td>
<td>223,510</td>
</tr>
<tr>
<td>Auburn</td>
<td>188</td>
<td>115,092</td>
</tr>
<tr>
<td>Opelika</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Phenix City</td>
<td>220</td>
<td>49,756</td>
</tr>
<tr>
<td>Columbus, GA</td>
<td>227</td>
<td></td>
</tr>
</tbody>
</table>
HPC 7

HPC 7 is an east-west corridor between Memphis, Tennessee and Atlanta, Georgia passing through the northern portion of the state, including the Huntsville, Decatur and Muscle Shoals area. HPC 7 follows US 72 from the Alabama-Tennessee state line near Cherokee to Scottsboro before heading southeast and joining US 411 to the Alabama-Georgia state line via Rome. The route is Interstate standard along I-565 between Decatur and Huntsville.

HPC 7 provides important access to industry and education, with Decatur being home to industrial giants such as Boeing, Nucor Steel, Daikin America, and 3M as well as the UAH and University of North Alabama in Florence (UNA) campuses, both having full time enrollments of 4,800 students. Huntsville also brings an exciting combination of history and technology, contrasting the state’s largest collection of pre-Civil War houses with the US Space and Rocket Center. The Rocket Center was responsible for developing the rocket which sent the first Americans into space and transported the first astronauts to the moon and is a major tourist attraction.

Table 3.2 High Priority Corridor 7

Principal Cities (west to east)	Miles from Western Alabama Side of Corridor (near Cherokee)	County Population		
		2000	2005	2025
Memphis, TN	121			
AL-TN State Line				
Muscle Shoals	26	54,984	56,241	59,484
Decatur	67	111,064	115,944	131,112
Huntsville	92	276,700	293,783	349,713
Scottsboro	126	53,926	56,648	64,516
Atlanta, GA				

Figure 3.2 Economic Growth Along HPC 7

Economic growth along HPC7

-3 -1 1 3 5
annual growth change (%)

Muscle Shoals (Colbert County)
Decatur (Morgan County)
Huntsville (Madison County)
Scottsboro (Jackson County)
Centre (Cherokee County)
Chattanooga, TN (Hamilton County)
Atlanta, GA (Fulton County)

City / County

Source FDIC
HPC 10

HPC 10 is also known as HPC 45 and Appalachian Corridor X. On completion of Corridor X, the route is due to become part of the future I-22, for which it already carries some designation signs. The corridor connects Birmingham with eastern Mississippi and southeastern Tennessee, following US 78 northwest from Birmingham to Tupelo, Mississippi, where it intersects with HPC 11. From Tupelo, the corridor continues along US 78 to the Mississippi-Tennessee state line where it meets I-55.

Birmingham and Memphis, Tennessee are the main economic, cultural and educational centers at either end of the corridor. Both experience large daytime population increases as commuters arrive. Although Memphis has a higher number of commuters, Birmingham has a much higher proportion of longer distance commuters, with almost 40 percent traveling from outside the city compared to 15 percent in Memphis.

The route through Tupelo provides access to important medical resources and cultural attractions, including the headquarters of the North Mississippi Medical Center, the largest non-metropolitan hospital in the United States, which serves people in northwest Alabama, north Mississippi and portions of western Tennessee. Tupelo is also an area which attracts tourist traffic, being the birthplace of Elvis Presley and location of an annual Elvis festival.

Table 3.3 High Priority Corridor 10

<table>
<thead>
<tr>
<th>Principal Cities (west to east)</th>
<th>Miles from Western Alabama Side of Corridor (near Hamilton)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-55, MS</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Tupelo, MS</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>AL-MS State Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birmingham</td>
<td>105</td>
<td>662,047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>667,018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>701,651</td>
</tr>
</tbody>
</table>

HPC 11

This corridor follows Appalachian Corridor V along US 72 from Chattanooga, Tennessee to Huntsville and Decatur before joining US 78 to the Alabama-Mississippi state line. There it joins US 78 to Tupelo along the same route as HPC 10. The corridors diverge at Tupelo, with HPC 11 following US 278 to join I-55 in Batesville, Mississippi.

The economic importance of the corridor and the access it provides to educational and cultural opportunities are discussed with regards to corridors HPC 10 and HPC 7. However, HPC 11 does provide an important additional route through the central northwestern portion of the state.

23 H.R. 2673, Section 111(2)(B) of the Consolidated Appropriations Act, 2004
Table 3.4 High Priority Corridor 11

<table>
<thead>
<tr>
<th>Principal Cities (west to east)</th>
<th>Miles from Western Alabama Side of Corridor (near Hamilton)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>I-55, Batesville, MS</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Tupelo, MS</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>AL-MS State Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decatur</td>
<td>88</td>
<td>111,064</td>
</tr>
<tr>
<td>Huntsville</td>
<td>115</td>
<td>276,700</td>
</tr>
<tr>
<td>AL-TN State Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chattanooga, TN</td>
<td>202</td>
<td></td>
</tr>
</tbody>
</table>

HPC 28

HPC 28 is the Birmingham Northern Beltline, which follows HPC 10 around Birmingham, and is also known as Appalachian Corridor X-1. The corridor begins at I-59 in the vicinity of Trussville and traverses westward to intersect with US 75, US 79, and US 31 before continuing southwestwardly to intersect US 78 and terminate at the I-59/I-459 interchange.

HPC 28 will complement the I-459 Southern Beltline, providing a complete route around Birmingham for Interstate traffic. The Northern Beltline is some 56 miles and passes by Birmingham International Airport, Alabama’s largest airport offering more than 100 flights per day and serving an estimated 3 million passengers per year.

Appalachian Regional Corridors

Two corridors are designated as part of the Appalachian Development Highway System (ADHS) regional corridor network, as elaborated below:

- Corridor V crosses into Alabama by way of Decatur, Huntsville and Scottsboro as it connects Memphis and Chattanooga, Tennessee. It follows the same route along US 72 that is designated HPC 7 from the western Alabama-Tennessee state line to Scottsboro.

- Corridor X, when completed, will follow the US 78 corridor along a 176 mile (283 km) route from I-55 in Mississippi to Birmingham. This section, which is also designated HPC 10, is expected to become future I-22.

- Corridor X then joins Corridor X-1, the Birmingham Northern Beltline. This is a proposed 50.8 mile bypass route around Birmingham through northern and western Jefferson County, to be completed by 2025. The route complements the I-459 Southern Beltline to provide a complete route around downtown Birmingham for Interstate traffic.
El Camino Real

Originating in Mexico, El Camino Real is a 1,729 mile, historically and economically significant corridor running from El Paso, Texas through Louisiana, Mississippi and Alabama to Brunswick, Georgia. Approximately 64 percent of the corridor from Texas is four lanes or funded to be four lanes, and it serves as an important industrial corridor in each of the five states it crosses. The corridor provides an important evacuation route and can help to ease congestion on nearby east-west arterial routes and north-south highways.

The Alabama portion of El Camino Real is a 400-mile corridor following US 84 through the south of the state. The corridor provides access to Enterprise and Dothan in the east, and also connects with I-75 north to Atlanta and Macon and southbound into Florida. In the west, the highway crosses I-59 in Tennessee, as well as connecting with I-65 south to Mobile and north to Montgomery. El Camino Real also touches the southern periphery of Alabama’s Black Belt counties, providing another key route across this predominantly rural area.

Table 3.5 El Camino Real

<table>
<thead>
<tr>
<th>Principal Cities (west to east)</th>
<th>Miles from Western Alabama Side of Corridor (near Isney)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>AL-MS State Line near Isney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterprise</td>
<td>173</td>
<td>43,615</td>
</tr>
<tr>
<td>Dothan</td>
<td>205</td>
<td>88,787</td>
</tr>
<tr>
<td>AL-GA State Line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corridor Needs

Although the existing corridors connect the main cities in Alabama, it can be seen that they are essentially east-west routes. There is a need to improve north-south connections through the state, a view often expressed at the SWTP public meetings. This is particularly true in the west of the state, where massive new development is arriving with the ThyssenKrupp pressed steel plant opening in 2010 and where strategic north-south routes are lacking. The plant is anticipated to generate 29,000 jobs during the construction phase and to employ 2,700 when fully operational, in an area where there are around 88,000 under-employed workers. Although much of the raw materials and products from the plant are anticipated to be transported by rail and on the waterways, the growth in truck movements and increased commuter trips will place significant demands on the road network.

Environmental Protection

Alabama has a wealth of natural resources. Figure 3.3 illustrates state parks, federal lands, scenic byways and rails to trails routes statewide.
State Parks & Federal Lands

Figure 3.3

Legend
- Scenic Byways & Rail-to-Trail
 - Scenic Byway Route
 - Rail-to-Trail Route
- State Parks & Federal Lands
 - Federal Land
 - State Park
- State Road Network
 - Interstate
 - Other State Road Network
- Other Features
 - Planning Area Boundary
 - County Boundary
 - Urbanized Area
 - Lakes

Source: ALDOT and Jacobs Carter Burgess

This map is intended for planning purposes only.

June 2008
The Department’s Environmental Technical Section remains involved in projects through engineering and construction phases, monitoring the progress of the work for conformity with environmental requirements. ALDOT has 11 wetland banks throughout the state established for mitigation purposes. The banks vary in size, some more than 500 acres, with the sites turned over to the State Conservation Office for management. The ALDOT program has received two FHWA Awards for Eco System Approach to Wetland Banking, noting the State’s excellence in providing ecosystem incentives. The environmental reviews follow a carefully documented process that includes resource agencies and the public.

The Department is involved in three levels of environmental review: Categorical Exclusions, Environmental Assessments, and Environmental Impact Statements. A Categorical Exclusion (CE) is applied to minor infrastructure improvements which, based on prior experience and their basic nature, rarely if ever cause significant environmental impact. Categorically excluded transportation projects include planning activities, sidewalk construction in existing rights of way, repaving of roads, signalization and striping, bridge maintenance or replacement with little new right of way, and supplemental lane expansion activities such as the addition of shoulders, turn bays, or climbing lanes. Many federally-funded projects in Alabama receive CE classification.

If a transportation project does not meet the criteria for a CE and the magnitude of its impacts is unknown, it is required to undergo an Environmental Assessment (EA). The purpose of the EA is to determine whether an Environmental Impact Statement will be needed; if not, a Finding of No Significant Impact (FONSI) may be issued. An EA considers the transportation project’s purpose and need, alternatives, potential impacts of those alternatives, and stakeholder feedback. Typical transportation improvements that are first subjected to EA’s include those involving capacity expansion, considerable new right of way, and bypasses to existing roads. The majority of transportation projects undergoing EA receive FONSI documentation.

An Environmental Impact Statement (EIS) is the most in-depth environmental review and is carried out when a proposed undertaking is known to have significant and direct impact on the quality of the human or natural environment. New highways, highway re-alignments, and other projects that involve acquisition of large amounts of new right of way require an EIS. The EIS fully documents the purpose and need of a new project, alternatives, the affected environment, impacts and consequences of proposed alternatives, extensive feedback from affected agencies and citizens, justification of the final project decision, and proposed impact mitigation activities. A broad array of potential impacts are discussed including: land use, social and economic, bicycle and pedestrian interactions, air quality, noise, water quality, wetlands, wildlife and endangered species, and sites of cultural or historic importance. These impacts must be balanced by the need to provide safe and efficient transportation for citizens.

Air Quality

The Clean Air Act, first passed in 1963 (with major amendments in 1970, 1977, 1990 and 2005), authorizes the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for six “criteria pollutants”: carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter (PM), lead (Pb), and ozone (O₃). Transportation sources are primary emitters of all of these pollutants, though point sources such as power plants and manufacturing facilities also play a role (particularly for SO₂). Of the six pollutants, ozone is the only one not directly emitted; it is formed through photochemical reactions of sunlight, heat, nitrogen oxides, and volatile organic compounds (VOC).
Over the years, various locations in Alabama have encountered difficulties in satisfying NAAQS requirements. Until 2005, the Birmingham Metropolitan Area exceeded the legal limit for 8-hour ozone concentration; prior to 2003, it exceeded 1-hour standards. To improve Birmingham's air quality, a series of Transportation Control Measures (TCM) was implemented, including the establishment of Transportation Management Associations (TMA) and alternative transportation programs and facilities for bicyclists, pedestrians, and transit users. Key to reducing transportation-based air pollution is decreasing reliance on single occupant vehicles.

Though all counties are now in compliance with ozone limits, Jefferson, Shelby, and Walker counties in the Birmingham metropolitan area and Jackson County near Chattanooga, Tennessee are presently classified as "non-attainment" areas for PM$_{2.5}$. This designation impacts the ability of Alabama to utilize federal funds for transportation infrastructure. States with non-attainment areas must produce a State Implementation Plan (SIP) that will bring the areas back into compliance by a set date and all transportation plans and projects must be in conformity with the SIP before they can be adopted.

Water Quality

Major federal legislation concerning water quality includes the Clean Water Act, the Federal Water Pollution Control Act of 1972, and Executive Order 11990 on wetland policy. Inland waters are administered by the US Army Corps of Engineers, which issues construction permits and oversees necessary mitigation efforts when water resources are impacted.

Approximately 10 percent of Alabama is covered by wetlands, which are often affected by transportation projects. In complying with the federal policy of "no net loss" to wetlands, there is a three-step process of impact avoidance, minimization, and mitigation. If wetland impact cannot be completely avoided through thoughtful project planning and design, it must be minimized to the greatest possible extent, and then mitigated through some means that compensates for wetland values and functions.

Mitigation measures may occur on or offsite and can include the preservation, enhancement, or creation of wetlands. Wetland banking, a form of compensatory mitigation, has been formally practiced by ALDOT since 1996 and has resulted in the gain of over 5,000 acres of wetlands. These wetlands provide critical habitats to numerous plant and animal species and provide public educational and recreational opportunities in almost every major state river basin. Wetland replacement has been achieved through conversion of lowlying farmland to wetlands, allowing ALDOT to trade wetland credits between banking sites while continually building inventory. One site, a swamp along the Sipsey River where 450 acres were banked, is now considered one of Alabama’s ten natural wonders and the wetland banking program is a national model.

Wildlife

Alabama is home to the most species of fish, animals, birds, and plants of any state east of the Mississippi River. At the same time, Alabama is behind only Hawaii and California in the number of threatened and endangered species residing in the state. Endangered species are those in danger of extinction in most or all of their range, while threatened species are those likely to become endangered in the foreseeable future. With continued land development, habitat fragmentation and the impact of nearby human activities pose a major threat to these species.

The Endangered Species Act of 1973 requires all federal agencies to undertake conservation programs for endangered and threatened animals and plants, and prohibits the authorization, funding, or carrying
out of any action that would jeopardize a species or its critical habitat. Within Alabama, this law is administered by the US Fish and Wildlife Service (USFWS), which conducts reviews of transportation projects on a case-by-case basis. Consideration of habitat and biodiversity loss is part of all projects; a formal review is typically undertaken when large amounts of undeveloped right of way are acquired.

Cultural and Historic Resources

Sites of cultural or historical importance are protected by a number of federal laws and regulations, including the National Historic Preservation Act of 1966 and the USDOT Act of 1966. Commonly known as Section 4(f) resources, these sites include public parks and recreation areas, wildlife and waterfowl refuges, and sites listed or eligible for listing on the National Register of Historic Places (NRHP). “Use” of these sites by federally-assisted transportation projects is allowed only when there is no prudent and feasible alternative for such use, and when projects include all possible planning measures to minimize harm to protected resources. ALDOT consults closely with the State Historic Preservation Office (SHPO) throughout the planning process on projects where cultural and historic resources may be impacted. Approximately 1,200 historic buildings, sites, and districts in Alabama are currently listed on the NRHP.

SAFETEA-LU Requirements for Consultation and Environmental Mitigation

SAFETEA-LU requires state transportation agencies to consult with other agencies in order to eliminate or minimize conflicts with activities that could impact or be impacted by transportation. Furthermore, transportation decision makers must take into account the potential environmental impacts associated with a transportation plan or plan update, in order to mitigate those impacts. Mitigation as defined by the National Environmental Policy Act (NEPA) is a three-level concept. The first level is avoidance, and for transportation agencies, this could be as simple as choosing an alternative that avoids a sensitive resource, such as an historic site or a wetlands area. The second level is minimization, which means that if avoidance is not possible, then the transportation agency takes action to minimize impact to the sensitive resource. For example, spanning a stream or wetlands area would have considerably less impact than re-channeling the stream or filling the wetlands. The third level is mitigation, which means impact to a resource can’t be avoided. Examples here include recordation of a historic structure that must be demolished and compensation for filled wetlands by debits from a wetlands “bank.” Considerations of potential environmental impacts associated with transportation projects include but are not limited to the following resources/issues:

<table>
<thead>
<tr>
<th>RESOURCE / ISSUE</th>
<th>WHY IMPORTANT</th>
<th>REGULATORY BASIS</th>
<th>CONTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZMAT Sites</td>
<td>Health hazards, costs, delays, liability for both State & federal projects on either existing or acquired right-of-way</td>
<td>State & federal law; Guidelines for Ops; ASTM E-1527</td>
<td>Phase-I: Design Bureau/ETS, phone 334-242-6154</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phase-II & III: Materials & Tests Bureau, phone 334-206-2284</td>
</tr>
</tbody>
</table>
Air Quality
- Public health, welfare, productivity, and the environment are degraded by air pollution
- Clean Air Act of 1970; 40 CFR Parts 51 & 93; State Implementation Plan
- Design Bureau/ETS, phone 334-242-6147; PM-2.5 – Design Bureau/ETS, phone 334-242-6315

Noise
- Noise can irritate, interrupt, and disrupt, as well as generally diminish the quality of life
- Noise Control Act of 1972; ALDOT’s highway Traffic Noise Analysis Policy and Guidance
- Design Bureau/ETS, phone 334-242-6147 or 6828 or 6710

Wetlands
- Flood control, wildlife habitat, water purification; applies to both State and federally funded projects
- Clean Water Act of 1977; Executive Order 11990; 23 CFR 777
- Design Bureau/ETS, phone 334-242-6145; US Army Corps of Engineers, phone 251-690-2658

Threatened and Endangered Species
- Loss of species can damage or destroy ecosystems, to include the human food chain
- Design Bureau/ETS, phone 334-242-6132; US Fish & Wildlife Service, phone 251-441-5181

Floodplains
- Encroaching on or changing the natural floodplain of a water course can result in catastrophic flooding of developed areas
- Executive Order 11988; 23 CFR 650; 23 CFR 771
- Design Bureau/ETS, phone 334-242-6145; Bridge Bureau, phone 334-242-6598

Farmlands
- Insure conversion compatibility with State and local farmland programs and policies
- Design Bureau/ETS, phone 334-242-6150; Natural Resources Conservation Service (NRCS), phone 334-887-4500
<table>
<thead>
<tr>
<th>Recreation Areas</th>
<th>Quality of life; neighborhood cohesion</th>
<th>Section 6(f) of the Land and Water Conservation Fund Act; Section 4(f) of the DOT Act of 1966 (when applicable); 23 CFR 771</th>
<th>Design Bureau/ETS, phone 334-242-6143 or 6152; Alabama Department of Economic and Community Affairs, phone 334-242-5363</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Structures</td>
<td>Quality of life; preservation of the national heritage</td>
<td>National Historic Preservation Act of 1966 (Section 106); the DOT Act of 1966 (Section 4(f)); 23 CFR 771; 36 CFR 800</td>
<td>Design Bureau/ETS, phone 334-242-6144 or 6225; Alabama Historical Commission, phone 334-230-2667</td>
</tr>
<tr>
<td>Archaeological Sites</td>
<td>Quality of life; preservation of national and Native American heritage</td>
<td>National Historic Preservation Act of 1966 (Section 106); the DOT Act of 1966 (Section 4(f)); 23 CFR 771; Executive Order 13175</td>
<td>Design Bureau/ETS, phone 334-242-6144 or 6225; Alabama Historical Commission, phone 334-230-2667</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>To avoid, minimize, or mitigate disproportionately high impacts on minorities and low-income populations; basic American fairness</td>
<td>Title VI, Civil Rights Act of 1964; Executive Order 12898</td>
<td>Design Bureau/ETS, phone 334-242-6529 or 6576; right-of-way office in each respective ALDOT Division</td>
</tr>
</tbody>
</table>

In each of the examples given above, the first contact listed is the ALDOT’s Design Bureau Environmental Technical Section (ETS), not because it is a “resource agency” as defined by federal regulations, but because it has the multidisciplinary experts who can guide you through the early identification of impacts in the initial project planning and development stage. The sooner a potential environmental impact is identified, the more likely it can be avoided, minimized, or mitigated. Early contact with the ETS can insure timely consultation with all potentially affected stakeholders and compliance with provisions of the National Environmental Policy Act (NEPA) and its enforcing regulations.
4. Financing the Transportation Program

Federal funding for the transportation program is financed through levies on gasoline, diesel and other user related expenses. There is a 18.4¢ motor fuel tax collected on each gallon of gas and deposited into the Highway Trust Fund to be used for transportation and other purposes, such as the Leaking Underground Storage Tank Fund that receives .1¢ of all fuel taxes collected. The Highway Trust Fund is used to fund the Mass Transit Account with 2.86¢ of receipts being used for public transit programs. The Highway Trust Fund is appropriated by Congress through legislation that finances the nation’s transportation program.

Federal Highway Trust Fund

National outlook for the Highway Trust Fund, the core building block of the transportation program since its inception in the 1960s, is troubled, with shortfalls anticipated by 2009. There are two major causes for the projected shortfall of the Highway Trust Fund: the rising cost of highway construction, operations and maintenance, and reduced revenues as a result of fuel efficiency, the growing number of hybrid vehicles and the growing use of alternative fuels.

The National Surface Transportation Infrastructure Financing Commission (NSTIFC) was established by Section 11142(a) of SAFETEA-LU in recognition of the need to address the prospects for future highway and transit funding from the Highway Trust Fund. The NSTIFC’s recommendations are due to Congress in 2008.

Federal Legislation – SAFETEA-LU

SAFETEA-LU, the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users authorized in 2005, approved a $244.1 billion program funding transportation. The legislation carries on transportation’s core programs – the Surface Transportation Program (STP), National Highway System (NHS), Interstate Maintenance (IM) Program, Bridge Program and Congestion Mitigation/Air Quality (CMAQ) Improving Program. It also adds the Highway Safety Improvement Program (HSIP) to fund strategic safety planning and performance, thereby providing states with flexibility in targeting the most critical safety needs. SAFETEA-LU’s safety programs, a major state and federal priority, have identified $220 million per year nationwide for a Railway-Highway Crossing Program and additional funds for construction and operational improvements on high-risk rural roads.24

In addition to the HSIP program initiated with SAFETEA-LU, the legislation also created a broad sweep of programs targeting safety. The Safe Routes to School program encourages children to walk and bicycle to school while the Work Zone Safety program funds work zone safety training and traffic control devices and high visibility garments for workers in work zones. SAFETEA-LU also funds bicycle and pedestrian safety as well as programs to improve the safety of older drivers.

ALDOT is the designated recipient for public transit funding from FTA on behalf of rural areas and urban areas of less than 200,000 population. A majority of these funds are used for capital programs such as the purchase of transit equipment. Allocations to Alabama for the transit program are detailed later in this chapter.

Funding and Expenditure History

Funding continues to be one of the most formidable challenges faced by the transportation program in Alabama and across the nation. Alabama’s transportation program relies on a number of funding resources – federal, state and local. The trend nationally has been moving in the direction of a growing reliance on state and local funding, with federal funding sources contributing less than half of the cost of transportation capital investments.\(^\text{25}\) Alabama’s transportation program for a ten-year period ending September 30, 2006, includes funding from federal aid (55 percent), state gas tax (33 percent), motor vehicle and motor carrier taxes (8 percent), Highway bonds (2 percent) and other sources (3 percent),\(^\text{26}\) as shown in Table 4.1.

Table 4.1 ALDOT Funding Sources (1997-2006)

<table>
<thead>
<tr>
<th>Source</th>
<th>Revenue</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Aid</td>
<td>$4,482,067,432</td>
<td>54.6%</td>
</tr>
<tr>
<td>Fuel Taxes</td>
<td>$2,558,609,743</td>
<td>32.5%</td>
</tr>
<tr>
<td>Motor Vehicle & Motor Carrier Taxes</td>
<td>$592,753,623</td>
<td>7.8%</td>
</tr>
<tr>
<td>Other Sources</td>
<td>$465,958,439</td>
<td>5.1%</td>
</tr>
<tr>
<td>Total</td>
<td>$8,099,389,237</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Source: ALDOT Annual Report, 2006

Revenue will tend to dictate the overall level of expenditures. Table 4.2 shows how ALDOT has used allocated funds over the past decade. The program’s expenditures are focused on state, federal and county aid construction (80 percent) and maintenance (15 percent), with administration, equipment purchases and debt service making up the balance.

Table 4.2 ALDOT Expenditures (1997-2006)

<table>
<thead>
<tr>
<th>Expenditure</th>
<th>Amount</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>$5,926,801,424</td>
<td>80.1%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>$1,177,632,119</td>
<td>14.8%</td>
</tr>
<tr>
<td>Debt Service</td>
<td>$93,632,432</td>
<td>1.2%</td>
</tr>
<tr>
<td>Administration, Equipment Purchase and Other</td>
<td>$871,319,295</td>
<td>3.9%</td>
</tr>
<tr>
<td>Total</td>
<td>$8,069,385,270</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Source: ALDOT Annual Report, 2006

Overview of State Funding

The local share of the Alabama transportation program is financed through a mix of state and local sources. The primary funding source is the state motor fuel tax. There are additional fuel related taxes that are used for transportation and other State General Fund and local government purposes.

Gasoline Tax

In addition to the federal tax on gasoline, the State of Alabama collects 18¢ per gallon state tax on gasoline. The state gasoline tax includes a 2¢ per gallon inspection fee that is used, in part, to fund local transportation needs.

Other Fuel and Vehicle Taxes

Alabama also generates funding from the other oil and gas sources related to motor fuel and offshore production. These include the following:

- Motor Fuels Tax – an excise tax levied on distributors and suppliers of motor fuel, diesel oil, tractor fuel, gas oil and kerosene. The tax is also levied on motor carriers who operate on State highways, with proceeds allocated to repayment of Highway Authority Bonds for construction and maintenance of public roads and bridges.

- Motor Vehicle Registrations – an annual fee levied on motor vehicles registered in Alabama, with 72 percent of the proceeds allocated to the Public Road and Bridge Fund, 21 percent distributed to counties or municipalities where the vehicle is registered, and 7 percent distributed to the 67 counties on the basis of vehicle registrations. Additional amounts are collected from truck and truck tractors and distributed to the Public Road and Bridge Fund (65 percent) and to the 67 counties (35 percent). There is an additional $10 fee paid by private passenger automobiles and trucks with gross weight of 8,000 pounds or less allocated to the State General Fund for the Department of Public Safety.

- Oil and Gas Privilege Tax – is levied on individuals and companies producing gas or oil from beneath soil or water. The tax varies with the production type – offshore or onshore, well classification, etc. Offshore proceeds are distributed with 90 percent to the State General Fund and the remainder to the counties in which the oil or gas was produced. Onshore production proceeds are distributed with 25 percent to the State General Fund and the balance to counties and municipalities. None of these funds are distributed into the Road and Bridge Fund.

- Oil and Gas Production Tax – is levied on production of oil and natural gas from wells in Alabama. Proceeds are deposited entirely into the State General Fund. None of these funds are distributed into the Road and Bridge Fund.

Revenues to the state transportation program have increased over the years. From FY1997 to FY 2006, gas taxes and other state funding sources increased an average of 2.3 percent per year from $433 million to $531 million. Projected revenues from these sources are anticipated to generate $20.9 billion by 2035. These projections assume a 2 percent annual increase, which is conservative and may underestimate the amount of funding that will be available.
Projected Funding by Mode

Projected revenue streams for each key component of Alabama’s multimodal transportation network follow. Funds are projected based on various articles of legislation and recent trends. Issues which could impact these revenue streams through 2035 are identified; however, in most cases, the only rational projection method is to assume that recent trends will continue over the duration of the planning horizon. Uncertainties in the availability of future funds could greatly impact the accuracy of these projections.

Roads and Bridges

As previously mentioned, funding for state highways and bridges comes from a number of federal and state sources. Federal highway and bridge funds are distributed to the states based on allocation formulas, in addition to individual high priority projects that can be defined by Congress. Table 4.3 summarizes funds apportioned to Alabama for FY2007 under each of SAFETEA-LU’s primary programs.

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Apportionment</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate Maintenance</td>
<td>$129,357,000</td>
<td>16.7%</td>
</tr>
<tr>
<td>National Highway System</td>
<td>$146,511,000</td>
<td>18.8%</td>
</tr>
<tr>
<td>Surface Transportation Program</td>
<td>$156,386,000</td>
<td>20.0%</td>
</tr>
<tr>
<td>CMAQ</td>
<td>$12,350,000</td>
<td>1.6%</td>
</tr>
<tr>
<td>Bridge Replacement Program</td>
<td>$103,095,000</td>
<td>13.2%</td>
</tr>
<tr>
<td>Highway Safety Improvement Program</td>
<td>$40,947,000</td>
<td>5.2%</td>
</tr>
<tr>
<td>Equity Bonus</td>
<td>$70,945,000</td>
<td>9.1%</td>
</tr>
<tr>
<td>Appalachian Program</td>
<td>$29,130,000</td>
<td>3.7%</td>
</tr>
<tr>
<td>Other</td>
<td>$91,457,000</td>
<td>11.7%</td>
</tr>
<tr>
<td>Total</td>
<td>$780,178,000</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Source: ALDOT Department of Transportation Planning

Estimating the future level of federal funds remains an extremely difficult exercise due to the inherent uncertainties of the political process and the impact of the nation’s economic outlook on appropriations bills. Issues with the Highway Trust Fund could cause reapportionments, thus lowering the amount each state receives. For the purposes of identifying a funding gap between these federal aid sources and actual needs, this plan looks at two funding alternatives.

One alternative assumes that the $780,000,000 allocated to Alabama during 2007 will remain relatively constant through 2035, with 2 percent annual adjustments to account for inflation. The second alternative bases projections off of a slightly lower allocation of $720,000,000, taking into account the variability of federal funding levels.

One adjustment was made to account for Section 10212 of SAFETEA-LU, which calls for a rescission of unobligated funds in 2009. This amendment to the plan cuts national funds by $8.54 billion. The rescission of funds will be distributed among the states based on annual apportionment rates from 2004 to 2009. Alabama’s apportionment rate of approximately 2 percent will total $170 million. To account for this rescission, projected funds for 2009 were first adjusted for inflation (increased by 2 percent from
2008), and then the rescission amount of $170 million was subtracted. After 2009, funds were adjusted to continue the straightline appreciation of 2 percent. Therefore, 2010 funds were developed by increasing the 2009 funds (before the rescission funds were subtracted) by the annual adjustment factor of 2 percent. This assumption would result in the total apportionments shown in Table 4.4.

Table 4.4 Federal Aid Roadway and Bridge Funding Estimates (2007-2035)

<table>
<thead>
<tr>
<th>Year</th>
<th>Low Projection</th>
<th>Anticipated Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>$720,000,000</td>
<td>$780,000,000</td>
</tr>
<tr>
<td>2008</td>
<td>$734,400,000</td>
<td>$795,600,000</td>
</tr>
<tr>
<td>2009*</td>
<td>$578,655,150</td>
<td>$641,079,150</td>
</tr>
<tr>
<td>2010</td>
<td>$749,088,000</td>
<td>$827,742,240</td>
</tr>
<tr>
<td>2011</td>
<td>$764,069,760</td>
<td>$844,297,085</td>
</tr>
<tr>
<td>2012</td>
<td>$779,351,155</td>
<td>$861,183,026</td>
</tr>
<tr>
<td>2013</td>
<td>$794,938,178</td>
<td>$878,406,687</td>
</tr>
<tr>
<td>2014</td>
<td>$810,836,942</td>
<td>$895,974,821</td>
</tr>
<tr>
<td>2015</td>
<td>$827,053,681</td>
<td>$913,894,317</td>
</tr>
<tr>
<td>2016</td>
<td>$843,594,754</td>
<td>$932,172,204</td>
</tr>
<tr>
<td>2017</td>
<td>$860,466,649</td>
<td>$950,815,648</td>
</tr>
<tr>
<td>2018</td>
<td>$877,675,982</td>
<td>$969,831,961</td>
</tr>
<tr>
<td>2019</td>
<td>$895,229,502</td>
<td>$989,228,600</td>
</tr>
<tr>
<td>2020</td>
<td>$913,134,092</td>
<td>$1,009,013,172</td>
</tr>
<tr>
<td>2021</td>
<td>$931,396,774</td>
<td>$1,029,193,435</td>
</tr>
<tr>
<td>2022</td>
<td>$950,024,709</td>
<td>$1,049,777,304</td>
</tr>
<tr>
<td>2023</td>
<td>$969,025,204</td>
<td>$1,070,772,850</td>
</tr>
<tr>
<td>2024</td>
<td>$988,405,708</td>
<td>$1,092,188,307</td>
</tr>
<tr>
<td>2025</td>
<td>$1,008,173,822</td>
<td>$1,114,032,073</td>
</tr>
<tr>
<td>2026</td>
<td>$1,028,337,298</td>
<td>$1,136,312,715</td>
</tr>
<tr>
<td>2027</td>
<td>$1,048,904,044</td>
<td>$1,159,038,969</td>
</tr>
<tr>
<td>2028</td>
<td>$1,069,882,125</td>
<td>$1,182,219,748</td>
</tr>
<tr>
<td>2029</td>
<td>$1,091,279,768</td>
<td>$1,205,864,143</td>
</tr>
<tr>
<td>2030</td>
<td>$1,113,105,363</td>
<td>$1,229,981,426</td>
</tr>
<tr>
<td>2031</td>
<td>$1,135,367,470</td>
<td>$1,254,581,055</td>
</tr>
<tr>
<td>2032</td>
<td>$1,158,074,820</td>
<td>$1,279,672,676</td>
</tr>
<tr>
<td>2033</td>
<td>$1,181,236,316</td>
<td>$1,305,266,129</td>
</tr>
<tr>
<td>2034</td>
<td>$1,204,861,042</td>
<td>$1,331,371,452</td>
</tr>
<tr>
<td>2035</td>
<td>$1,228,958,263</td>
<td>$1,357,998,881</td>
</tr>
<tr>
<td>Total</td>
<td>$27,255,526,572</td>
<td>$30,087,510,072</td>
</tr>
</tbody>
</table>

* Funding allocations for 2009 reflect rescission of unobligated funds
Transit

SAFETEA-LU also authorizes the FTA to make funds available on an annual basis to public agencies around the country to provide transit services. The majority of funds used for such services within Alabama come from three categories:

- Section 5307 Urbanized Area Formula Program – used for transit capital and operating assistance in urbanized areas with populations of more than 50,000. Alabama has 12 urbanized areas that were allocated $17,911,958 under this program in FY2007, as shown in Table 4.5.

- Section 5309 Capital Investment Program – used for a variety of capital purchases, including fixed guideway systems, new service starts and buses. A total of 18 projects resulted in total funding of $17,061,000 in FY2007 for Alabama.

- Section 5311 Nonurbanized Area Formula Program – used for capital, operating and administrative assistance for areas under 50,000 in population. A total of $11,814,084 was awarded to rural areas in Alabama in FY2007.

Table 4.5 FY2007 Section 5307 Apportionments

<table>
<thead>
<tr>
<th>Urbanized Area</th>
<th>Apportionment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anniston</td>
<td>$673,045</td>
</tr>
<tr>
<td>Auburn / Opelika</td>
<td>$622,422</td>
</tr>
<tr>
<td>Birmingham</td>
<td>$5,778,323</td>
</tr>
<tr>
<td>Columbus / Phenix City</td>
<td>$1,993,783</td>
</tr>
<tr>
<td>Decatur</td>
<td>$592,014</td>
</tr>
<tr>
<td>Dothan</td>
<td>$567,616</td>
</tr>
<tr>
<td>Florence</td>
<td>$713,416</td>
</tr>
<tr>
<td>Gadsden</td>
<td>$558,511</td>
</tr>
<tr>
<td>Huntsville</td>
<td>$1,649,487</td>
</tr>
<tr>
<td>Mobile</td>
<td>$2,668,998</td>
</tr>
<tr>
<td>Montgomery</td>
<td>$2,302,892</td>
</tr>
<tr>
<td>Pensacola / Lillian</td>
<td>$2,688,166</td>
</tr>
<tr>
<td>Tuscaloosa</td>
<td>$1,220,418</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$22,029,091</td>
</tr>
</tbody>
</table>

Source: FTA Fiscal Year 2007 Apportionments and allocations and Program Information

In addition to these three primary FTA sources, Alabama received transit allocations through several additional programs, as shown in Table 4.6.
Table 4.6 FY2007 Additional FTA Funding Sources

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5303</td>
<td>Metropolitan Transportation Planning Apportionments</td>
<td>$623,537</td>
</tr>
<tr>
<td>5304</td>
<td>Statewide Transportation Planning Apportionments</td>
<td>$163,245</td>
</tr>
<tr>
<td>5310</td>
<td>Elderly and Persons with Disabilities</td>
<td>$2,035,366</td>
</tr>
<tr>
<td>5311</td>
<td>Non-Urbanized Area and Rural Transit Assistance Program Apportionments</td>
<td>$11,814,084</td>
</tr>
<tr>
<td>5313(b)</td>
<td>State Planning and Research</td>
<td>$1,474,000</td>
</tr>
<tr>
<td>5316</td>
<td>Job Access and Reverse Commute</td>
<td>$2,829,066</td>
</tr>
<tr>
<td>5317</td>
<td>New Freedom Apportionments</td>
<td>$1,549,415</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$20,488,713</td>
</tr>
</tbody>
</table>

Source: FTA Fiscal Year 2007 Apportionments and Allocations and Program Information

It is assumed that transit funding will remain relatively constant over the life of the study as well. Using this assumption, funding was projected to increase at a rate of 2 percent annually for the life of the study, resulting in a total projected amount for transit funding of $2.2 billion.

Railroads

Freight railroads are funded as a for-profit business in the private sector, with the exception of a few short-line local lines that are subsidized by the state through economic development funds. No funds from the public sector go to support freight systems, and it is assumed that this arrangement will continue for the foreseeable future. Intermodal freight transfer facilities such as those at docks and airports are typically constructed with local or state government participation through bond issues. These bonds are ultimately repaid through fees assessed on users.

Ports and Waterways

The Alabama State Docks, including the Port of Mobile and other inland ports, are primarily funded from revenues generated by users. Since the last update of the SWTP in 1999, revenues have increased by 87 percent from $55.6 million to $104 million in 2007. These funds will be used to fund any improvements to the Port Authority's many facilities.

Capital improvements have traditionally been undertaken through revenue bonds, repaid from port revenues, and general obligation bonds, repaid from state tax revenues. The current cash flow of the Alabama State Docks is not expected to be sufficient to support the required level of expenditures. The most realistic options available to avoid limiting growth of the system are to issue additional bonds or to request special allocations from the state government. These are issues that the Alabama State Port Authority will address.

Other publicly owned docks, such as those of local development authorities, counties or municipalities, are generally funded through local authority revenue bonds or economic development funds. Private
docks have their own dedicated funding sources. No figures on revenue streams for either of these sets of facilities were readily available.

Most of the state’s waterway systems are operated and funded by the US Army Corps of Engineers, which receives its funding through Congressional appropriation each year. Within the Tennessee River System, the Corps operates and maintains the locks and navigation channels under agreement with the Tennessee Valley Authority (TVA), which is responsible for the overall waterway. The cost of capital improvements on the waterways is shared by federal and local entities, with the proportion of local match varying by location and project. Federal funds are derived partially from waterway fuel taxes via the Inland Waterway Trust Fund.

Projection of Needs

Due to the variability of construction costs and broad analysis of needs, cost estimates should be considered for planning purposes only. To account for inflation in construction costs and other variable expenses, ALDOT applies an annual inflation rate of 4 percent to projects in the STIP. This rate was used to escalate estimated needs for each project type.

Roads

For the purpose of projecting funding, roadway needs were split into congestion-related projects and pavement maintenance needs. The statewide travel demand model results were used to determine congestion needs. According to the model, more than 1,550 miles of Alabama’s roads will be congested, which equates to a funding need of $12.1 billion through horizon year 2035. Funding needed for pavement maintenance over the study period totaled $4.9 billion. Assuming these projects would be completed gradually over the span of the study period, the projected total costs for congestion and maintenance were escalated by 4 percent to the midpoint of the study period.

The current level of funding for safety improvements was used to project safety needs for the future. The 2008 STIP includes $163 million in funding for safety improvements for FY2008-2011. This projection was broken down to an annual average of $46 million, which was escalated to account for inflation as well as increase in VMT. According to the travel demand model, VMT is anticipated to increase at a rate of 2.75 percent per year. This rate, in addition to the 4 percent increase to account for inflation, was applied to the annual amount of $46 million for the life of the study, resulting in a total cost of $7.25 billion. Adding the projected cost of the highway-rail crossing programs of $200 million when adjusted for 4 percent inflation, safety needs total $7.45 billion.

Accounting for inflation, the total estimated cost for roads is $36.85 billion, including $20.9 billion for congestion needs, $8.5 billion for pavement maintenance and $7.45 billion for safety needs.

Bridges

Bridge maintenance and repair will consume a large portion of Alabama’s transportation budget. Over half of the state’s bridges will require rehabilitation or reconstruction in the next ten years due to age, while almost 80 percent of the bridges statewide will need attention by the end of the study period. According to the needs analysis, the state’s bridge system will need an estimated $11.8 billion in repair and rehabilitation during the study period. Again, assuming that bridge projects would occur over the length of the study period, total estimated costs were inflated to the midpoint year, totaling $20.5 billion.
Alabama Statewide Transportation Plan Update

In addition to current and future bridge needs, ALDOT is responsible for the payment of outstanding bonds used to fund bridge projects. Currently, the agency has approximately $200 million in bonds to repay. ALDOT has plans to repay these GARVEE bonds over the next ten years.

Transit

Funding projections for Alabama’s urban transit systems were based on the needs identified through current LRTPs and the STIP, in addition to other recommendations from the study. The funding estimates were increased in line with the population growth forecasts to reflect the likely increase in demand for transit services in urban and rural areas.

For years 2008 to 2011, the STIP program totals approximately $353 million, which equates to an annual transit expenditure of around $88 million. Although much of the transit needs focus on operating costs that do not require construction, the same 4 percent annual increase was applied to these needs to account for increases in gas prices and to adjust for the rate of inflation. Projecting this annual cost of $88 million, increased by 4 percent each year and in line with the population growth forecasts, results in a total amount of $4.6 billion through the study period to 2035.

Rural transit system needs were based on current funding levels and anticipated population growth. Projections were made for the length of the study period, with the assumption that all rural transit needs were funded by FTA’s Section 5311 combined with the local match. During FY2007, rural areas received $11.8 million in Section 5311 funds from FTA. This number was assumed to increase in accordance with population growth. Funding needs for rural transit systems, adjusted for inflation and population growth, total $775 million over the study period. Additionally, implementing elderly transit service in the six counties not currently served would total approximately $60 million over the study period.

The total statewide funding requirement for transit is therefore estimated at around $5.435 billion.

Pedestrian and Bicycle

Pedestrian and bicycle system needs were also based on current funding levels. The current STIP includes an annual average of $2 million for these projects, which include sidewalks, bike paths, multi-use trails and other pedestrian and bicycle friendly facilities. Since pedestrian and bicycle needs increase with population growth, the needs for this category of improvements were adjusted in line with population trends. Costs were also escalated by 4 percent annually to account for rising construction costs and inflation. The cost of pedestrian and bicycle needs over the study period totals $106 million.

Aviation, Railroads and Intermodal Facilities

Though freight will play an increasingly significant role in the operation of the transportation system, ALDOT is not directly responsible for the costs associated with aviation, railroad, port and Intermodal facilities. Although the responsibilities of the Alabama Department of Aviation have been brought under the control of ALDOT, it is anticipated that improvements to airports and associated facilities will continue to be funded from dedicated revenue streams independent of other ALDOT sources. Opportunities to enhance freight mobility that lie within ALDOT’s jurisdiction include improving access to Intermodal facilities and planning for increased truck traffic statewide. These improvements are reflected in the costs projected for roads and bridges.
Financing Summary

To assess Alabama’s ability to fund the transportation system’s needs over the life of the study, anticipated funding levels were compared to the projected needs. The results show a significant funding shortfall. Funding from the federal and state resources totals $49.6 to $53.2 billion compared to $62.9 billion in defined needs.

Table 4.7 Estimated System Needs Through 2035

<table>
<thead>
<tr>
<th>Category</th>
<th>Projected Need</th>
<th>Projected Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Construction & Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestion</td>
<td>$20,900,000,000</td>
<td></td>
</tr>
<tr>
<td>Bridges</td>
<td>$20,500,000,000*</td>
<td>$47,400,000,000 to $51,000,000**</td>
</tr>
<tr>
<td>Pedestrian & Bicycle</td>
<td>$106,000,000</td>
<td>$47,400,000,000 to $51,000,000**</td>
</tr>
<tr>
<td>Safety</td>
<td>$7,450,000,000</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>$8,500,000,000</td>
<td></td>
</tr>
<tr>
<td>Highway Construction & Maintenance Subtotal</td>
<td>$57,456,000,000</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>$5,435,000,000</td>
<td>$2,200,000,000</td>
</tr>
<tr>
<td>Total</td>
<td>$62,891,000,000</td>
<td>$49,600,000,000 to $53,200,000**</td>
</tr>
</tbody>
</table>

* Includes repayment of GARVEE bonds and that half of bridge improvements will be maintenance projects.
** Consists of projected federal and state funds. Projected funding shows a range from low to high, taking into account the rescission of federal funds anticipated for FY 2009.
5. **RECOMMENDATIONS**

Recommendations included in statewide transportation plans will typically address state transportation programs, policies and strategies. The SWTP provides the “context” that guides identification of projects for the STIP. The context, detailed in the recommendations, is set by the results and findings learned from the analysis of current and anticipated future transportation conditions, public comments and funding prospects. The analysis accomplished for the SWTP update was supported by a statewide travel demand model developed for the project. Using the travel demand model to review current 2005 and future year 2035 travel demand provided analytical support in identification of multimodal transportation needs and possible programmatic solutions.

The SWTP recommendations, policies and strategies are organized into the following major areas:

- Project Identification Process
- System Operations and Capacity
- Interagency Coordination and Public Outreach
- Funding
- Economic Development

Plan recommendations address all modes and incorporate SAFETEA-LU requirements. The current federal requirements in SAFETEA-LU build on a history of regulations. Planning factors first introduced in ISTEA continue into SAFETEA-LU with one addition – security. The new legislation re-emphasizes safety of the transportation network as a priority. SWTP update recommendations address the following:

- What are the goals of Alabama’s transportation program?
- What are the needs that the transportation program will address in the future?
- What will be necessary to successfully meet those needs?
- How can the transportation program marshal the resources to support the travel demands of Alabama’s growing economy and population?

The recommendations that follow reflect the analytical results of the study effort, public and stakeholder comments and input, and national transportation trends expected to impact Alabama’s program. Funding is a key consideration driving recommendations. The Department’s funding limitations anticipated to continue into the future require a focus on getting value and results from investments in system improvements.

Project Identification Process

Importance

The level of funding for transportation is not expected to keep pace with transportation needs. The Department’s selection of projects takes into account improvements based on measures of condition such as pavement rating, bridge rating, safety and traffic volumes (congestion). Selected projects respond to transportation needs and state priorities for preserving and maintaining transportation resources (the roads, bridges, transit facilities and other modal capital equipment). To optimize the public investment, improvements can maximize the functionality and efficiency of the transportation system, by incorporating multimodal connectivity and SAFETEA-LU priorities for safety and security as appropriate.
Recommendation

- ALDOT’s process for selection of projects includes an exhaustive evaluation of transportation need. Selected improvements can be even more effective if there is the opportunity to address multimodal connectivity and potential to address State and Department goals for economic development and security.

- The Department should continue with its programs for maintenance of roads and bridges and work with local governments to assist with local systems. The Department should continue coordinating with local governments in their effort to support urban and rural public transit services.

System Operations and Capacity

Importance

Transportation funding from all sources will not be sufficient funds to address future transportation needs. Therefore, the state will need to maximize the efficiency of existing transportation resources in addressing future transportation demands. Getting the most efficiency from the existing system operations will require using Intelligent Transportation System technology and travel demand strategies to improve mobility.

Recommendation

- The Department should move forward with current and planned programs to implement ITS technologies. Using ITS technologies will be important in the monitoring of traffic operations and providing motorists with information about road conditions. ITS monitoring can alert authorities about traffic accidents, helping to quicken response and return to normal operations.

- Traffic operation improvements are additional tools that improve traffic flow, save energy and reduce pollution. The Department should continue to work closely and assist MPOs and RPOs on traffic operations, access management and complete streets concepts where appropriate.

- The Department should work closely and support MPOs and RPOs on travel demand management programs that can be implemented locally and improve system efficiency and provide congestion relief.

- The Department should continue to work closely and support MPOs and RPOs in developing alternative transportation programs.

- The Department has initiated work on a Statewide Bicycle and Pedestrian Facilities Plan that will guide the direction of the bicycle and pedestrian program in Alabama. When the plan is completed, the Department should work closely with MPOs and RPOs to develop bike and pedestrian improvements.

Interagency Coordination and Public Outreach

Importance

ALDOT’s public outreach program was developed with input from a large group of stakeholders including local metropolitan and non-metropolitan governmental representatives. The continuation of this coordination will be important to the state’s programs as well as the public. Sharing information about transportation programs and state transportation initiatives with the public and interested stakeholders will
continue to be an important part of the state’s planning program. The Department has developed an informative web site with information about ALDOT operations, resources and current initiatives. This effort can be enhanced by periodic publications and materials distributed statewide.

Recommendation

- ALDOT should consider developing an annual Fact Book for the public using information from the annual report sent to the Governor. The Fact Book could cover the same areas reported in the annual report to the Governor, but developed with the public in mind. The Fact Book could provide a quick reference guide with information about the status of the state’s system and its operations. The Fact Book could be posted on the web site, distributed by MPOs and RPOs at public information meetings and available at Division offices for visitors.
- ALDOT should update the Public Outreach Action Plan every five years in consultation with stakeholders from urban and rural parts of the state. The MPOs and RPOs can be important partners in this effort, assisting with public outreach and identification of special communities and providing input for improving the outreach process.

Funding

Importance

- The Alabama transportation program will require additional financial resources, in addition to those provided by federal and state gas tax sources. The state has been aggressive in issuing GARVEE bonds for important programs and with supporting the development of toll roads and bridges. Innovative funding options hold possibilities for implementation of important transportation projects. Public/private partnerships may offer access to alternative funding resources that should be explored. These partnerships have been demonstrated to be a viable funding strategy for major capital projects.
- Federal and state gas tax is a major funding source for the transportation program. These traditional transportation funding sources have been negatively impacted by the increased use of alternative fuels and hybrid vehicles. At the same time increasing costs of highway repairs and construction have increased budgeted costs of needed projects. Funding shortfalls for transportation needs will impact state and local transportation programs. The issue has statewide importance

Recommendation

- ALDOT should continue to assess the feasibility of using public/private partnership to fund major projects. Public/private partnerships could be a potential avenue for timelier implementation of important transportation improvements.
- ALDOT should continue to address the need for additional transportation funding to support the State’s program to address identified transportation needs for mobility and access.

Economic Development

Importance

The transportation program has been valuable to achieving economic development goals statewide. The Department should continue to work closely with economic development agencies, chambers of
commerce, planning agencies and local governments statewide to identify opportunities to continue coordinated efforts to attract new development and support existing businesses.

Recommendation

- ALDOT should continue working with rural area economic development authorities as well as urban economic development organizations to identify transportation programs and projects that stimulate economic development.
- High Priority Corridors identified for economic development purposes are part of the ALDOT program. The Department should continue to work with public and private partners and stakeholders in development of High Priority Corridor implementation plans. Many of these corridors are currently congested with truck traffic, impacting both commercial and public mobility. Improving these facilities will benefit a broad range of users and support Alabama businesses with cost efficient transportation of goods to the marketplace.
6. APPENDICES

Appendix A – Metropolitan Planning Organization Profiles
Auburn/Opelika MPO

The Auburn/Opelika MPO is made up of the cities of Auburn and Opelika and Lee County, which is located approximately 15 miles west of the Alabama-Georgia border. The MPO adopted its Long Range Transportation Plan (LRTP) in 2005. The multimodal plan has a planning horizon year of 2030 and analyzes the transportation network including roads, bicycle and pedestrian facilities, rail, transit, freight movement, and aviation. A major aspect of the plan was developing a travel demand model. The MPO is in the process of developing a financially constrained Transportation Improvement Plan (TIP) that will determine funded projects in the area between 2008 and 2011.

Highways

The Auburn-Opelika area is located along I-85 approximately 60 miles east of Montgomery. Aside from I-85, other major roads in the area are US 280 and US 431. US 280 is a STRAHNET route that connects Auburn with Birmingham, Phenix City, and Columbus. US 431 is a principal arterial that links Auburn and Opelika to I-20 and to Anniston.

Transit

Public transit in Auburn and Opelika is provided by the Lee County Transit Agency (LETA). LETA operates a single fixed route as well as demand response service, both of which operate from 6:00 AM to 6:00 PM Monday through Friday.

Bicycle and Pedestrian

Because of the Auburn-Opelika area’s close association with Auburn University, bicycle and pedestrian transportation is very popular. Both cities have a committee dedicated to bicycles and have a significant amount of bicycle facilities planned through their 2030 LRTP. The area has programmed over $7 million for 32 miles of bicycle facilities. The sidewalk network in the area is also fairly extensive. There is currently 85 centerline miles of roadway with sidewalk on one or both sides, with an additional 40 miles planned.

Airports and Rail

There is one airport located within the MPO, Auburn-Opelika Robert G. Pitts Airport. The airport has two runways, 18/36 and 11/29. The facility has 55 aircraft based on field and averages 179 operations per day. Programmed projects for the airport include remodeling the terminal and adding more hangar space.

Norfolk Southern and CSX both operate rail lines in the area.
Birmingham MPO

The Birmingham MPO is responsible for transportation planning in Jefferson and Shelby counties. Jefferson County, which is the urban center of Birmingham, has seen a small decrease in population since 2000, while the population of Shelby County, which contains Birmingham’s suburbs, has grown by about 4 percent annually since 2000. The 2030 LRTP, which was adopted in August 2005, was developed partially to be in compliance with the EPA’s 8-hour ozone standard. The next update of the plan is due in 2008. The planning factors used in the plan were economic vitality; safety and security; accessibility and mobility; environment, energy efficiency and quality of life; transportation system integration and connectivity; system management and operations; and system preservation.

Highways

The Birmingham area includes many major roadways. Interstates 20, 65, and 59 all pass through downtown Birmingham, and there is a partial bypass, I-459, allowing motorists to bypass downtown. Other major routes in the area are US 78, US 31, and US 280. Congestion is a problem on many area roadways, especially during the AM and PM peak hours.

Transit

Public transit in the Birmingham-Jefferson County area is operated by the Birmingham-Jefferson County Transit Authority. The Authority has 40 fixed routes and also operates demand response services, all of which operate Monday through Saturday from 5:00 AM to 10:00 PM.

Bicycle and Pedestrian

Birmingham MPO recognizes the importance of bicycle and pedestrian activities both as a mode of transportation and for recreation. Jefferson and Shelby counties have each completed bicycle and pedestrian planning activities, and the MPO works with local counties to ensure regional connectivity of facilities. The 2030 LRTP includes a regional proposed bicycle network.

Airports and Rail

The Birmingham MPO contains two airports, Birmingham International and Shelby County Airport. Birmingham International, BHM, has two runways 6/24 and 18/36. The airport has 241 aircraft based on field and an average of 340 operations per day. The much smaller Shelby County Airport, which is owned by Shelby County, has a single runway and 57 operations per day.

Birmingham has historically had a focus on rail transportation. There are currently three Class I operators, one passenger operator, and several short-line operators with tracks in the area.

Major Issues

The Birmingham LRTP contains an extensive list of projects in a wide variety of transportation areas. Proposed projects total $3,078,180,811 and are from the following categories: capacity, signal and intersection, ITS, intermodal access, non-capacity, bicycle and pedestrian, and transit. A major focus of the LRTP is the proposed Corridor X, the name given to the area along US 78 which is expected to be the location of the future I-22 connecting Birmingham to Memphis.
Calhoun Area MPO

The Calhoun Area MPO serves Calhoun and Talladega counties. The city of Anniston is the major population center for the area. The MPO's LRTP, adopted in 2005, provides outlines and analyzes needs through 2030.

Highways

The Calhoun area has a variety of different roadway types. The southern portion of the MPO boundary is served by I-20 and US 78. Downtown Anniston is served by SR 21 and US 431, and also has a fairly well connected grid network.

Transit

East Alabama Regional Planning and Development Commission oversees all of the transit systems serving the area. The cities of Anniston, Weaver, Hobson City and Oxford fund a fixed route system with four loop routes and complementary ADA demand response service. The cities of Jacksonville and Piedmont provide ADA demand response service, and the Calhoun County Commission funds public demand response transit for the rural areas of Calhoun County. Other systems in the region are demand response and are operated by the sponsoring counties.

Bicycle and Pedestrian

Calhoun County is fortunate to have the premier rails-to-trails project in the state. The Chief Ladiga Trail, a former rail line, extends 33 miles into Calhoun and Cleburne counties and connects with the Silver Comet Trail at the Alabama-Georgia state line. In 2003, the MPO adopted its Bicycle and Pedestrian Plan, which examines existing facilities and proposes new projects to complement the Chief Ladiga and meet current and future needs.

Airports and Rail

The City of Anniston has one airport, Anniston Metropolitan Airport. The airport has a single runway, 5/23, as well as an FAA Flight Service Center located nearby. The airport has 74 aircraft based on field and averages 94 operations per day.

Many of the rail lines in the Anniston area are abandoned. Norfolk Southern still has two operating lines in the southern portion of the MPO area, and there is also a small network of tracks operated by the US Government in the southwestern portion of the area. The Anniston area and Calhoun County are also served by Amtrak’s Crescent route en route between New York and New Orleans.

Major Issues

The LRTP outlines and analyzes needs through 2030 determined using a model developed for the plan. Projects proposed include roadway improvements, intermodal, transit, and bicycle/pedestrian. An in-depth Bicycle and Pedestrian Plan was also completed in 2003. Major projects proposed include six-laning I-20 and constructing an Anniston East Bypass.
Columbus-Phenix City Area MPO

The Alabama and Georgia communities that make up the Columbus, Georgia and Phenix City, Alabama area are separated by the Chattahoochee River but connected by a transportation network including five bridges. The Columbus-Phenix MPO is a unique urbanized area with the planning and jurisdictional responsibilities shared by government agencies across state lines. Alabama MPO members consist of Phenix City, Russell County, and Lee County; Georgia MPO members are the City of Columbus, Bibb County, and Muscogee County. The MPO’s 2030 LRTP was adopted in December 2004.

Highways

The Columbus-Phenix City transportation network has enabled the area to grow in recent years. An area-wide bypass facility has been completed with major improvements to US 80 and US 431. Both US 80 and US 431 are classified as STRAHNET routes and have major bridge crossings over the Chattahoochee River. A four-lane bridge across the Chattahoochee River at 13th Street opened in May 2000, which allowed for the conversion of the two-lane 14th Street Bridge for pedestrian and bicycle use only.

Transit

Phenix City Express (PEX) provides public transportation for Phenix City with two fixed routes and a paratransit system. METRA provides nine fixed routes and a demand response “dial a ride” service for the City of Columbus.

Bicycle and Pedestrian

There has been continued federal support for pedestrian facilities in the LRTP. Columbus has a complete inventory of all sidewalk locations within Muscogee County. Citizens can request new sidewalks, but construction depends on availability of limited funds. Besides local government funding, sidewalk construction through dedicated taxes or as a part of road reconstruction projects, the only other funding source comes from the federal government in the form of Transportation Enhancement (TE) funds.

Bicycling is a transportation mode used in this area, as well as several biking events in the area. “Wheels of Fire” is a local bike ride sponsored by a local bike organization known as the “Lonewolf Bicycling Club.” Additionally, a “riverwalk” multi-use path is featured on the Alabama and Georgia banks of the Chattahoochee River.

Airports and Rail

The Columbus Metropolitan Airport, located northeast of the Columbus-Phenix City downtown area along I-185, serves the area. ASA/Delta Connection is the airline carrier for the airport and has daily connections to Hartsfield-Jackson International Airport in Atlanta.

Norfolk Southern and CSX are two Class I railroads that serve the Columbus-Phenix City area. Approximately six active freight rail lines operate within the Columbus-Phenix City area.

Ports and Waterways

The Chattahoochee-Apalachicola Waterway connects the Columbus-Phenix area with the Gulf Intracoastal Waterway at Apalachicola, Florida. The Chattahoochee River in Phenix City has State Docks.
Decatur MPO

The Decatur MPO covers the cities of Decatur, Hartselle, Trinity, Priceville, and Flint City. A travel demand model developed as part of the LRTP process estimated traffic conditions in the area in 2000 and 2030, the planning horizon year. The area is expected to see 68 percent growth over the next 30 years. Major issues identified included access management and safety, and the recommendation was made for development of an Access Management Plan for the area. Major projects include a Decatur/Hartselle Bypass and an I-565 Extension from I-65 to US 31.

Highways

The Decatur area is located just west of Wheeler Lake along I-65. Other major roads in the area are I-565 (which connects Huntsville to I-65), US 72, and US 31. US 72, an east-west roadway, passes through downtown Decatur before heading east toward Huntsville and Chattanooga. US 31 is a major north-south highway paralleling I-65 through most of the state and passing through Birmingham and Montgomery.

Transit

The Decatur MPO has limited transit services provided by Morgan County. The door-to-door demand response service operates on weekdays from 8 AM to 5 PM for a fare of $1.00.

Bicycle and Pedestrian

The Decatur area has several multi-use facilities, including 16.25 miles of existing facilities outlined in the 2030 LRTP. Although specific recommendations for potential projects are not provided, the LRTP does note that the city planning organizations are placing significant emphasis on bicycle and pedestrian facilities, especially around schools and activity centers.

Airports and Rail

The Decatur area is served by three airports. Two of them, Pryor Field in Limestone County and Roundtree Field in Hartselle, are general aviation airports. Pryor Regional has one runway, 18/36, which is 6100ft long and has 144 aircraft based on field with an average of 459 operations per day. The closest commercial airport is Huntsville/Decatur International Airport, located on I-565 near Madison, which serves general aviation, commercial passenger air service, and cargo operations. In 2000, the Huntsville/Decatur International Airport served 1,082,349 passengers.

Two railways are operated by CSX and Norfolk Southern, both with offices in Decatur and with rail yards located near downtown Decatur. The CSX line is one of the primary north-south lines in the Nashville Division, originating near Panama City, Florida and passing into the Chicago Division just north of Nashville, Tennessee. Average train count numbers obtained from CSX indicate that 30-35 trains per day pass through Decatur. The Norfolk Southern line is a major east-west line that crosses the Alabama-Mississippi state line en route from Corinth, Mississippi, passing through Muscle Shoals, Decatur and Huntsville before heading on to Chattanooga, Tennessee. An average of 18-20 trains per day pass through Decatur on this line.

A major rail-air-ground intermodal facility is located on a spur of the Norfolk Southern rail line at the Huntsville/Decatur International Airport.
Ports and Waterways

Decatur is also served by a navigable waterway, the Tennessee River. The three port terminal facilities located along the Tennessee River in Decatur are the busiest of any along the waterway. All are located on the south bank of the river.
Gadsden-Etowah MPO

The Gadsden-Etowah MPO is located in Etowah and Calhoun counties in northeastern Alabama. It consists of the following cities: Attalla, Glencoe, Southside, Rainbow City, Hokes Bluff, and Gadsden – the largest city in Etowah County and host agency of the MPO. The MPO’s LRTP was updated in late 2004 to a planning horizon of 2030. The plan identified a full program of projects worth over $395 million. Major projects include extending I-759 from I-59 west to SR 77, adding an interchange on I-59 at Pleasant Valley Road, extending US 441 from Gadsden to Turkeytown, and widening US 278 from CR 65 to east of Piney Woods Road.

Highways

The Gadsden-Etowah area is served by various federal and state routes. I-59 serves the Etowah area on the north and west of Gadsden, while I-759 is a spur Interstate linking US 411 south of Gadsden to I-59. SR 77 is a north-south NHS principal arterial route that connects I-59 in Rainbow City to I-20 in Talladega County.

Transit

The Gadsden Trolley serves Gadsden-Etowah with three routes that cover the east, west and central sections of Gadsden. The Gadsden Trolley also operates a demand-response transportation program (DART), which is a 24-hour advance call service that operates up to eight vehicles a day.

Bicycle and Pedestrian

The Gadsden area has no existing bicycle facilities. The 2005 LRTP recommends developing a bicycle committee at the MPO level, identifying needed bicycle improvements, and integrating bicycle facilities with roadway improvements.

Airports and Rail

The Gadsden-Etowah area is served by the Gadsden Municipal Airport, located near the I-59/SR 77 interchange. The airport has two runways, with the longest being 6,200ft. In 2006, the airport averaged 65 operations per day, with the majority being transient general aviation.

The area is also served by Norfolk Southern and CSX rail lines.
Huntsville Area MPO

The Huntsville area is located in northern Alabama and is home to Redstone Arsenal, NASA’s Marshall Space Flight Center, Cummings Research Park, the Huntsville-Madison County Jetplex Industrial Park foreign trade zone, the US Space and Rocket Center, the Huntsville International Airport, and the International Intermodal Center (IIC). The Huntsville area MPO members included Madison County and the cities of Huntsville, Madison, Triana, and Owens Crossroads.

Highways

Regional transportation facilities serving Huntsville include I-565, SR 255, US 431, and US 231. I-65 is located approximately 17 miles west of Huntsville, and can be accessed by I-565. Area growth realized over the years has placed a demand on the need for additional road capacity through new roads or widening existing ones. The Huntsville Area Transportation Study long range plan has identified a need for three new expressways that aim to alleviate existing arterials and collectors currently operating over capacity.

Transit

The City of Huntsville provides a transit system via its Public Transit Division. The Division offers 13 fixed routes and a demand response service. One route is a dedicated tourist loop that circulates within the downtown area. There are 14 vehicles available for the demand response service.

Bicycle and Pedestrian

The City of Huntsville budgets approximately $200,000 annually for sidewalk repair and construction. A Bikeway Plan shows 30 routes covering a distance of approximately 147.5 miles. The City plans over 130 miles of interconnected canoe, pedestrian/bike, and/or hiking trails. The City of Madison plans to develop greenways to connect to Huntsville’s multi-use path system.

Airports and Rail

Huntsville International Airport is located in southeastern Madison County along I-565. The airport provides major passenger airline service and freight service. The following airlines provide domestic and international service at the airport: American, Continental, Delta, Northwest, and USAir. The cargo carrier service providers include Cargolux and Emery Worldwide.

Norfolk Southern provides rail service in Huntsville. Huntsville’s International Intermodal Center (IIC) rail terminal features transfer facilities for trailers on flat cars and containers on flat cars that connect the rail system with air and truck modes. Huntsville and Madison County Railroad Authority (HMCR) operate a Class III railroad, which connects with Norfolk Southern and CSX to the west.

Ports and Waterways

The Tennessee River flows in the Huntsville area, serving as the southern boundary of Madison County and the Huntsville area. The Tennessee Waterway in northern Alabama connects the Huntsville area with dock facilities in Bridgeport, Decatur, and Florence. The waterway provides a navigable transportation route from Knoxville, Tennessee to Ohio and the Mississippi River.
Mobile Area MPO

The Mobile area is located in southwestern Alabama in coastal Mobile County and has the following MPO member municipalities: the cities of Mobile, Prichard, Chickasaw, Saraland, Satusma, and Creola and Mobile County. The MPO’s LRTP was revised and adopted in June 2005 with a 2030 horizon year. The LRTP discusses the need for a bypass for the City. The proposed roadway is 21 miles long and would cost an estimated $194 million. Road capacity will be added to I-10 and I-65 in the vicinity. The other roadway projects are mainly capacity improvements along major roads.

Highways

The NHS in the Mobile area can serve traffic between New Orleans on the west and Tallahassee on the east and beyond. Montgomery is approximately 175 miles northeast of Mobile via I-65. New Orleans is approximately 140 miles west of Mobile via I-10, and Tallahassee is approximately 250 miles east of Mobile via I-10. I-165 is a spur Interstate that provides a connection between downtown Mobile and I-65 on the north.

Transit

The Wave Transit System provides public transportation for the cities of Mobile, Prichard, Chickasaw, and Saraland. The Wave offers a fixed bus system with 13 routes, which serve the Mobile Regional Airport, Spring Hill, Highway 45, Dauphin Street, the Bel Air Mall, Crosstown, Dauphin Island Parkway, Highway 90/Tillman’s Corner, Toulminville, Plateau/Prichard, Cottage Hill/University of South Alabama and neighborhood areas. Demand response paratransit services as well as subscription and special services are also provided.

Bicycle and Pedestrian

There is a signed bicycle route in downtown Mobile and the Church Street East Historic Area. The Western Shore Waterfront Bike/Ped Path (10 miles), or Crepe Myrtle Trail, is proposed from the CBD at the Convention Center/Cooper Riverside Park to McNally Park municipal pier along both separated paths and city streets. All transit buses are equipped with bike racks.

The 2002 Tricentennial Green Space Master Plan identified 12 bicycle/pedestrian routes, which were detailed and prioritized in the 2004 Green Spaces Engineering Feasibility Study. Chickasabogue Park has three biking/hiking loop trails, totaling over 8 miles of off-road trails for mountain bikes. Sidewalks line most roads in urban core, east of I-65 and in older residential neighborhoods, and seem to be used most frequently in downtown area, but are not prevalent in neighborhoods west of I-65 or in suburban commercial areas. Sidewalks are planned for Grelot Road and bicycle facilities are planned for Zeigler Boulevard from Forest Hill to Schillinger Road as part of a road widening project.

Airports and Rail

Mobile Regional Airport is located west of the downtown area and offers air freight services as well as commercial passenger service via six airlines (American Eagle, Delta, United Airways, Northwest, Continental Express, and ASA airlines). These airlines connect Mobile to Houston, Dallas/Fort Worth, Memphis, Chicago, Cincinnati, Charlotte, and Atlanta.
The Brookley Airport and Industrial Complex is a 1,700-acre industrial complex owned and operated by the Mobile Airport Authority located south of the State Docks terminal, which specializes in air cargo shipment and major aircraft maintenance and reconstruction. The airport and complex has connections to air, rail, and Interstate transportation adjacent to I-10 and the CSX railway.

Three Class I railroads are present in the Mobile area as well as one Class III. The Mobile area accommodates the largest number of intermodal rail transfers within the state. The State Docks Terminal Railway operates 24 hours a day, transferring rail cars and containers from rail to and from the port facilities.

Passenger rail in the Mobile area was previously served by Amtrak’s Sunset Limited service between Florida and California, but service between Orlando and New Orleans was suspended after Hurricane Katrina. No decision has been made by Amtrak about reinstatement of the Orlando to New Orleans leg of the Sunset Limited.

Ports and Waterways

The Port of Mobile connects to the International Sea Lanes of the Gulf of Mexico, the Intracoastal Waterway, and five of six navigable inland waterways that serve the state. The Port has 36 berths at the State Docks, which are equipped with state-of-the-art loading and unloading equipment to receive and ship all types of cargo. Facilities for accommodating coal, grain, forest products, weather-sensitive goods, and many other materials are provided. The State Docks terminal is specially equipped for intermodal shipments linking waterway transport with rail, truck and air modes.
Montgomery Area MPO

The Montgomery area MPO serves portions of Montgomery, Autauga, and Elmore counties. The MPO membership also includes the cities and towns of Montgomery (Alabama’s capital city), Wetumpka, Millbrook, Prattville, and Coosada. The following government institutions and universities are located in the Montgomery area: State government headquarters, Alabama State University, Auburn University, Faulkner State University, Huntingdon College, Troy State University Montgomery, Southern Christian University, Montgomery Bible Institute and Theological Center, Maxwell Air Force Base and Gunter Annex. Last updated in 2005, the Montgomery Study Area 2030 LRTP includes 104 projects and programs costing approximately $794.6 million over a 25-year horizon.

Highways

The Montgomery area is connected to Mobile, Birmingham, and Atlanta via I-65 and I-85. Five bridges (two of them tolled) cross over the Alabama and Tallapoosa Rivers and tie into the northern and southern portions of the Montgomery area. The following highway projects are included in the 2030 LRTP:

- Southern Outer Loop from US 331 to I-85 (construction)
- I-65 in downtown Montgomery (widening)
- I-65 at Bell Street interchange (improvements)
- I-85 in East Montgomery (widening)
- Perry Hill Road (widening and resurfacing)
- North Prattville Bypass (construction)
- SR 14 in Autauga and Elmore counties (widening)
- US 231 in Elmore County (widening)
- CR 7/US 31 Connector in Elmore and Autauga counties (construction)
- South and East Boulevards from US 231 north to US 231 south (widening)
- Vaughn Road from Perry Hill Road to Ryan Road (widening)
- Atlanta Highway from East Boulevard to Brown Springs Road (widening)
- US 80 west from US 31 to Montgomery Regional Airport (widening)

Transit

The Montgomery Area Transit System (MATS) provides transit in the Montgomery area. It includes Capital Area Transit (CAT) providing fixed route services and Demand and Response Transit (DART) public transportation. Montgomery Area Paratransit (MAP) provides curb-to-curb service in the area.

CAT will undergo some major enhancements to improve their services, including installation of 75 new bus shelters, 75 bus bays and 500 benches along MATS routes. New park and ride lots will be added along SR 14 (Autauga/Elmore) and near I-85 and Taylor Road. Nine new standard buses and ten new paratransit buses will be purchased to accommodate additional headway frequencies.
Bicycle and Pedestrian

The Montgomery area has about $13 million in additional funding to supplement current Transportation Enhancement and local area funds for additional sidewalks, bicycle lanes and multi-use paths. The Montgomery Study Area Bicycle and Pedestrian Plan identified 106 projects, including 60 in Montgomery County, 13 in Autauga County and 33 in Elmore County. Most projects focused towards signing of bicycle facilities. Approximately 360 miles of bicycle routes are planned, with the longest project located in Elmore on Hwy 111 (13 miles).

Airports and Rail

Montgomery Regional Airport is located approximately seven miles southwest of downtown Montgomery on US 80 with access to I-65. This airport is multi-service, providing passenger, cargo, military, and general aviation services. Commercial passenger service is provided by American, Atlantic Southeast, Delta, Northwest, and USAir. Prattville Airport and Wetumpka Airport are both general aviation airports also in the Montgomery area.

CSX owns and operates rail lines in Montgomery that include service from Mobile, Birmingham, and Atlanta, Georgia and beyond. CSX also operates two switching yards in Montgomery.

Ports and Waterways

The Montgomery area has three rivers: the Alabama, Coosa, and Tallapoosa. The Alabama and Tallapoosa Rivers form the common boundary lines between Autauga, Elmore and Montgomery counties. The Alabama River serves as a navigable route between Montgomery and Mobile Bay, serving Selma and Claiborne en route. A State Docks terminal is located on the Alabama River accessible to the Interstate system, which also features intermodal services.
Shoals Area MPO

The Northwest Alabama Council of Local Governments (NACOLG) is the regional planning and intergovernmental coordination agency created by the local governments pursuant to Alabama State Legislation. NACOLG is a voluntary association of the following five counties: Colbert, Franklin, Lauderdale, Marion, and Winston, along with the municipalities therein. NACOLG also serves as the host agency for the Shoals Area MPO and is responsible for the administration of the transportation planning process in the Shoals Urban Area. All NACOLG policy decisions are made by local elected officials to ensure all NACOLG programs and policies reflect the interest of the member governments. The Shoals MPO LRTP was adopted in December 2005 with a plan horizon of year 2030.

Highways

Various transportation improvements are planned within NACOLG. In Colbert County, an overpass is planned at the intersection of SR 20 and SR 157, which will involve new bridges and on and off ramps and be classified as part of the NHS. In Franklin County, SR 13 will be relocated from CR 79 at Dime north to near Spruce Pine and widened to four lanes. SR 13 is part of the NHS.

Transit

The NACOLG Transit System serves the five counties of Lauderdale, Colbert, Franklin, Marion, and Winston. The transit system operates with federal funds administered by ALDOT and local money. NACOLG Transit operates a fleet of 53 vehicles and provides “curb to curb” service via Transit Dial-A-Rides.

The Shoals Area LRTP indicates the NACOLG Transit system should continue to expand the current demand response transit system by expanding the hours of operation, providing subscription scheduling and extending the service area approximately four miles outside the corporate limits of each city. As the demand for public transit increases, the LRTP indicates that consideration should be given to developing fixed route transit system with complimentary paratransit services for qualified persons with disabilities.

Bicycle and Pedestrian

Pedestrian and bicycle facilities enhance urban design and improve the quality of life. Several pedestrian and bicycle projects were identified in the LRTP, including the Florence Bicycle and Pedestrian Trail and the Reservation Road Bicycle and Pedestrian Trail, which would continue along Wilson Dam Corridor and include Avalon Avenue from Wilson Dam Highway to Woodward Avenue. The development of bicycle plans for each city in the Shoals area was also in the LRTP.

Airports and Rail

The Muscle Shoals Regional Airport is located north of US 72 Alternate in the southeastern corner of the urban area. Commercial passenger air service is provided by Northwest Airlink with daily connections to Memphis, Tennessee. The airport has two runways of 6,693 and 4,000 feet in length, respectively.

The railroad system in the Shoals area is provided by Norfolk Southern and Tennessee Southern Rail Company. The Shoals Area LRTP identified a few intermodal projects during the planning process, which include the relocation of the Norfolk Southern tracks extending through the southern portion of the area.
The railroad relocation would reduce the number of at-grade crossings in traffic congested areas and potentially improve both auto and rail efficiency in the Shoals area.

Ports and Waterways

The Tennessee River provides unique opportunities for commercial and industrial transportation in the Shoals area, such as for the thousands of industrial and service jobs at businesses and industries that utilize the river for transportation. Port facilities are available on both sides of the waterway for use by commercial and industrial interests. Public and private docks are also located along the Tennessee River providing an intermodal transportation connection.
Southeast Wiregrass Area MPO

The Southeast Wiregrass area is located in southeastern Alabama approximately 15 miles west and north of the Georgia and Florida borders. The area consists of Houston, Henry and Dale counties. Dothan in Houston County is the largest city in the area MPO; other MPO members include Headland, Ashford, Midland City and eight other smaller cities. The MPO LRTP was adopted in 2006 with a Year 2030 plan horizon.

Highways

The Southeast Wiregrass area is served by several NHS routes including US 84, US 231 and US 431. These routes are connected by Ross Circle (the Dothan Perimeter/Bypass), which is classified as a STRAHHNET route. In the absence of an Interstate highway system in the Southeast Wiregrass area, Ross Circle is integral to the movement of local, regional and truck traffic in the area.

Funds for various road improvement projects were obligated in the Southeast Wiregrass Area during FY2004. These included the resurfacing of SR 12/US 84 in Houston County near Ashford to west of CR 58; resurfacing of CR 55 in Houston County from north of CR 103 to CR 407; widening and resurfacing CR 29 in Houston County from north of CR 36 to CR 210; and resurfacing CR 312 in Houston County from CR 308 to CR 25.

Transit

The Wiregrass Transit Authority (WTA) provides public transportation services to the general public in Dothan and Houston County. With a fleet of 22 vehicles, WTA has the ability to transport large groups and accommodate the handicapped (14 vehicles are equipped with wheelchair lifts and stations). Their Dial-a-Ride service is a key service frequently used by the general public.

Bicycle and Pedestrian

Dothan has bicycle facilities consisting of separated grade path, on-street bicycle lanes, marked bicycle routes and unmarked bicycle routes. Many of the facilities are designated by signage, striping, or separated grade facility (such as a multi-use path). Sidewalks for pedestrian travel are concentrated in traditionally designed downtown areas of Dothan and suburban residential development.

Airports and Rail

The Dothan Regional Airport is located within Dale County approximately 7 miles northwest of Dothan's central business district. The airport serves the air transportation needs of Dale, Henry and Houston counties, including the city of Dothan and other nearby communities such as Abbeville, Headland, Enterprise, Ft. Rucker, Ozark, Midland City, as well as communities in northern Florida and southwestern Georgia. The Dothan Regional Airport consists of 1,200 acres of land with two runways (one of them an all-weather runway) and a 27,000 square foot terminal building. The Dothan Regional Airport is owned and operated by the Dothan-Houston County Airport Authority, Inc.

ASA serves the Dothan Regional Airport, providing daily departures and arrivals for the local population base. Six flights depart and arrive at the Dothan Regional Airport each day, providing connections through Atlanta.
The Southeast Wiregrass area is served by one Class I railroad – CSX – and two Class III railroads – Chattahoochee Bay Railroad (CHAT) and the Bay Line Railroad LLC. These railroads serve as a viable mode for goods movement in southeast Alabama and in the area.
Tuscaloosa MPO

Located approximately 50 miles southwest of Birmingham, Tuscaloosa MPO member governments include the cities of Tuscaloosa and Northport and Tuscaloosa County. The MPO’s study area includes the towns of Brookwood, Coaling, Coker, Lake View, Moundville, Vance, the University of Alabama, and Lake Tuscaloosa. The MPO LRTP was adopted in August 2004 with a Year 2030 plan horizon.

Highways

The Tuscaloosa area transportation network includes several NHS routes. The southern portion is served by I-20/59 south of the University of Alabama, running primarily east-west to the Birmingham area in the east and Greene County to the south and west. I-359 is a spur Interstate serving downtown Tuscaloosa with an interchange at I-20/59. US 82, US 43, AL 216, SR 69, and SR 171 are other major facilities within the MPO. There are plans to upgrade the US 43 and US 82 facilities, and a limited access highway from north Alabama through west Alabama and south to Mobile is also planned.

Transit

The Tuscaloosa Transit Authority (TTA) provides public transportation in the Tuscaloosa area. The TTA has four fixed transit routes during the weekdays that serve the university, Stillman College, McFarland Mall, and Crescent Ridge. TTA has five demand response vans that are used to support “curb to curb” trips generally intended for the elderly and disabled.

Bicycle and Pedestrian

A revised Bicycle and Pedestrian Plan is expected for approval in late 2007. Presently, there are no facilities exclusively dedicated to bicycles, although there are a few multi-use paths. The University of Alabama completed a few segments of a planned multi-use path system in 2006 extending along University Boulevard, 5th Avenue East, Campus Drive and McCorvey Drive, with an additional segment along University to be built in 2007. The university’s Campus Master Plan includes over a dozen other segments of identified multi-use paths.

Tuscaloosa Black Warrior Riverwalk along the southern river bank has completed sections that extend from Capitol Park at the western end of University Boulevard to the US Army Corps Office near 21st Avenue, and from River Road Park near Guildswood to the current eastern terminus near Hackberry Lane. Northport Levee Trail on the north side of the river stretches from near 30th Avenue to 5th Street near Northport/Tuscaloosa city limits.

There are two mountain bike trails in the Tuscaloosa area: Lake Lurleen State Park Trail (15.3 miles) and the Munny Sokol Park Trail System (9-plus miles). The Druid City Bicycle Club has eight designated routes used by members regularly.

Sidewalk coverage in Tuscaloosa is limited mostly to the CBD and University of Alabama campus, although most schools have coverage with gaps. Northport’s only three sidewalk routes run along Main Avenue, 5th Street and Old Bridge Avenue, with limited sidewalk around schools and in newer subdivisions.
Alabama Statewide Transportation Plan Update

Airports and Rail

The Tuscaloosa Municipal Airport (Van de Graaff Field) is located approximately five miles west of downtown Tuscaloosa, south of US 82. The airport has a 6,500ft runway that serves both freight and private air traffic. Commercial air service from approximately seven major airlines is available in Birmingham.

Railroads are a key element of Tuscaloosa’s transportation system, helping make this MPO area a major multimodal transportation center for western Alabama. Three Class I railroads serve the Tuscaloosa area: Norfolk Southern, CSX, and Alabama Southern Railroad. Passenger rail service is provided to Tuscaloosa on the Amtrak Crescent, which serves travelers between New Orleans and New York.

Ports and Waterways

In the Tuscaloosa area, the Black Warrior River generally flows from the northeast to southwest towards the Gulf of Mexico. The Warrior-Tombigbee Waterway serves western and central Alabama, providing a transportation route from Cordova in Walker County to the Port of Mobile. The State Docks terminal in Northport provides for the intermodal transfer between waterborne and other transport modes.
Florida-Alabama TPO

The Florida-Alabama TPO serves as staff to the Pensacola and Panama City MPOs and the Okaloosa-Walton Transportation Planning Organization (TPO). The TPO was formerly known as the West Florida Regional Planning Council (WFRPC) and the Pensacola MPO prior to May 2004. An MPO/TPO is a committee of local government officials established for the purpose of making transportation-related decisions at a regional level.

Highways

The WFRPC has an August 2007 draft of a Congestion Management Process Plan complete at the time of this writing. This report documents levels of traffic congestion in the Florida-Alabama TPO planning area. It identifies congested segments and details a comprehensive set of strategies to manage that congestion. The purpose of the CMP is to examine and rate the performance of transportation facilities (roadways, bike lanes, sidewalks and transit services) and to suggest the appropriate strategies to alleviate congestion via means other than adding road capacity, if possible. The CMP is updated annually in accordance with SAFETEA-LU. These annual updates include updating level of service analysis tables and developing congestion mitigation strategies for congested roadways.

Transit

Escambia County Area Transit (ECAT) provides the Pensacola area with public transportation. ECAT currently has over 1,500 bus stops covering 285 miles of routes with approximately 1.6 million annual passenger trips. The ECAT system currently provides service through fixed route bus, seasonal Pensacola Beach trolley, University of West Florida (UWF) on-campus trolley and ADA paratransit transportation. ECAT provides weekday and weekend service and currently operates 30 buses throughout the entire Pensacola community, seven days a week.

ECAT offers service specifically for individuals with disabilities who are unable to use their fixed route service. For ADA eligible riders, both curb-to-curb and door-to-door transportation is available upon request. Current ADA transportation service is provided through Pensacola Bay Transportation.

Airports

Pensacola Regional Airport, owned and operated by the City of Pensacola, is located in Escambia County, approximately three miles northeast of the central business district of the City of Pensacola. The airport is on approximately 1,300 acres and provides commercial passenger airlines service through Airtran, American, Continental, Delta, Northwest, and US Airways.

Ports and Waterways

The Port of Pensacola offers a complete range of cargo support services and equipment, from steamship agency to Customs brokerage and cargo bagging to heavy crane rentals. Some other capabilities offered by the Port of Pensacola includes direct vessel discharge, switching access, dry bulk storage, liquid bulk storage, Ro/Ro vessel operations, break bulk operations, neo bulk operations, project cargo operations, heavy lift operations, container loading and discharge, container stuffing and stripping.
Appendix B – SWTP Advisory Committee Membership
<table>
<thead>
<tr>
<th>Organization</th>
<th>Representation Category</th>
<th>Address 1</th>
<th>Address 2</th>
<th>City</th>
<th>Zip</th>
<th>Telephone</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anniston / East Alabama Regional Planning and Development Commission</td>
<td>Executive Director</td>
<td>Quintard Tower, Suite 300</td>
<td>1130 Quintard Avenue, P.O. Box 2146</td>
<td>Opelika</td>
<td>36801</td>
<td>256-237-9741</td>
<td>bill.curtis@adss.alabama.gov</td>
</tr>
<tr>
<td>Auburn / Opelika / Lee-Russell Council of Governments</td>
<td>Executive Director</td>
<td>2207 Gateway Drive</td>
<td>2207 Gateway Drive</td>
<td>Opelika</td>
<td>36801</td>
<td>334-749-5264</td>
<td>suzanne.burnette@adss.alabama.gov</td>
</tr>
<tr>
<td>Birmingham / Birmingham Regional Planning Commission</td>
<td>Executive Director</td>
<td>1231 1st Avenue North, Suite 220</td>
<td>1231 1st Avenue North, Suite 220</td>
<td>Birmingham</td>
<td>35203</td>
<td>205-324-2451</td>
<td>charles.ball@rpcgb.org</td>
</tr>
<tr>
<td>Columbus GA / AL / Department of Community & Economic Development</td>
<td>Executive Director</td>
<td>420 10th Street, P.O. Box 1340</td>
<td>420 10th Street, P.O. Box 1340</td>
<td>Columbus, GA</td>
<td>31903</td>
<td>256-265-4615</td>
<td>c獐@cityofcolumbus.com</td>
</tr>
<tr>
<td>Decatur / North Alabama Regional Planning Commission</td>
<td>Executive Director</td>
<td>216 Jackson Street SE</td>
<td>216 Jackson Street SE</td>
<td>Decatur</td>
<td>35601</td>
<td>256-793-9115</td>
<td>Djangh@adss.alabama.gov</td>
</tr>
<tr>
<td>Dothan / City of Dothan</td>
<td>Transportation Planner</td>
<td>P.O. Box 267</td>
<td>P.O. Box 267</td>
<td>Dothan</td>
<td>36302</td>
<td>205-549-4620</td>
<td>rjones@dothan.org</td>
</tr>
<tr>
<td>Florence / Northwest Alabama Council of Governments</td>
<td>Executive Director</td>
<td>103 Student Drive</td>
<td>103 Student Drive</td>
<td>Muscle Shoals</td>
<td>35661</td>
<td>205-309-0513</td>
<td>kgroves@ci.montgomery.al.us</td>
</tr>
<tr>
<td>Gadsden / City of Gadsden</td>
<td>Transportation Planner</td>
<td>P.O. Box 267</td>
<td>P.O. Box 267</td>
<td>Gadsden</td>
<td>35999</td>
<td>205-532-7253</td>
<td>khelms@adss.alabama.gov</td>
</tr>
<tr>
<td>Huntsville / Huntsville Planning Department</td>
<td>Executive Director</td>
<td>150 North Royal Street, Suite 300</td>
<td>150 North Royal Street, Suite 300</td>
<td>Huntsville</td>
<td>35801</td>
<td>205-706-4225</td>
<td>kgroves@ci.montgomery.al.us</td>
</tr>
<tr>
<td>Malbone / South Alabama Regional Planning Commission</td>
<td>Transportation Planning Director</td>
<td>420 Highway 69 North, Suite 111</td>
<td>420 Highway 69 North, Suite 111</td>
<td>Mobile</td>
<td>36603</td>
<td>205-303-2500</td>
<td>khelms@adss.alabama.gov</td>
</tr>
<tr>
<td>Montgomery / City of Montgomery / Division of Planning, Programming and Transportation</td>
<td>Transportation Planning Director</td>
<td>5900 Carmichael Place</td>
<td>5900 Carmichael Place</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-272-1212</td>
<td>kgroves@ci.montgomery.al.us</td>
</tr>
<tr>
<td>Montgomery / South Alabama Regional Planning Commission</td>
<td>Transportation Planning Director</td>
<td>5900 Carmichael Place</td>
<td>5900 Carmichael Place</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-272-1212</td>
<td>kgroves@ci.montgomery.al.us</td>
</tr>
<tr>
<td>Mobile / West Florida Regional Planning Council</td>
<td>Transportation Planning Director</td>
<td>5900 Carmichael Place</td>
<td>5900 Carmichael Place</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-272-1212</td>
<td>kgroves@ci.montgomery.al.us</td>
</tr>
<tr>
<td>Montgomery / South Central Alabama Development District</td>
<td>Transportation Planning Director</td>
<td>5900 Carmichael Place</td>
<td>5900 Carmichael Place</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-272-1212</td>
<td>kgroves@ci.montgomery.al.us</td>
</tr>
</tbody>
</table>
Alabama Statewide Transportation Plan Update

SWTP Advisory Committee Membership

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
<th>Address</th>
<th>City</th>
<th>Zip</th>
<th>Telephone</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Clyde Riggs</td>
<td>Executive Director</td>
<td>Alabama-Tombigbee Regional Commission</td>
<td>107 Broad Street</td>
<td>Dothan</td>
<td>36362</td>
<td>334 682-4234</td>
<td>jcriggs50@hotmail.com</td>
</tr>
<tr>
<td>Thomas B. Solomon</td>
<td>Executive Director</td>
<td>Southeast Alabama Planning and Development Commission</td>
<td>P.O. Box 1496</td>
<td>Mobile</td>
<td>36662</td>
<td>251 348-8823</td>
<td>thomas.solomon@southeastal.com</td>
</tr>
<tr>
<td>Kindall Anderson</td>
<td>Planner</td>
<td>Central Alabama Regional Planning and Development Commission</td>
<td>5075 Research Drive NW</td>
<td>Montgomery</td>
<td>36110</td>
<td>334 262-4300</td>
<td>kindall@carpdc.com</td>
</tr>
<tr>
<td>Robert B. Culver</td>
<td>Executive Director</td>
<td>Top of Alabama Regional Council of Governments</td>
<td>1409 Coliseum Blvd.</td>
<td>Huntsville</td>
<td>35805</td>
<td>256 582-2254</td>
<td>harrisr@adot.state.al.us</td>
</tr>
<tr>
<td>Tony Harris</td>
<td>Special Assistant to the Director</td>
<td>Alabama Rail Passenger Association</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 262-4300</td>
<td>leonardd@adot.state.al.us</td>
</tr>
<tr>
<td>Johnny L. Harris</td>
<td>Division Engineer</td>
<td>Alabama Rail Passenger Association</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 262-4300</td>
<td>leonardd@adot.state.al.us</td>
</tr>
<tr>
<td>L. Dee Rowe</td>
<td>Division Engineer</td>
<td>Alabama Rail Passenger Association</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 262-4300</td>
<td>leonardd@adot.state.al.us</td>
</tr>
<tr>
<td>Randall A. Estes</td>
<td>Division Engineer</td>
<td>Alabama Rail Passenger Association</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 262-4300</td>
<td>leonardd@adot.state.al.us</td>
</tr>
<tr>
<td>J. M. Griffin</td>
<td>Division Engineer</td>
<td>Alabama Rail Passenger Association</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 262-4300</td>
<td>leonardd@adot.state.al.us</td>
</tr>
<tr>
<td>Jerry L. Holt</td>
<td>Division Engineer</td>
<td>Alabama Rail Passenger Association</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 262-4300</td>
<td>leonardd@adot.state.al.us</td>
</tr>
<tr>
<td>R. F. Poiroux</td>
<td>Division Engineer</td>
<td>Alabama Rail Passenger Association</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 262-4300</td>
<td>leonardd@adot.state.al.us</td>
</tr>
<tr>
<td>Harold L. Glasson</td>
<td>President</td>
<td>Alabama State Port Authority</td>
<td>1701 North Beltline Hwy</td>
<td>Mobile</td>
<td>36618</td>
<td>251 470-8200</td>
<td>porcure@adot.state.al.us</td>
</tr>
<tr>
<td>Lynn Courtwright</td>
<td>Business Director</td>
<td>Aviation Council of Alabama</td>
<td>4445 Selma Highway</td>
<td>Montgomery</td>
<td>36106</td>
<td>334 566-2100</td>
<td>lnail@montgomeryairport.org</td>
</tr>
<tr>
<td>Phil Perry</td>
<td>Executive Director</td>
<td>The Alabama Bike Coalition</td>
<td>1409 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334 566-2100</td>
<td>rob@thealabamabikecoalition.org</td>
</tr>
</tbody>
</table>

Notes:
- **Modal Representation:**
 - Rail: 6
 - Rail Shippers: 1
 - Ports: 2
 - Bicycles: 0
 - Security & Ports Planning: 1
 - Business Director: 1
 - Executive Director: 1

Date: 6/6/2008
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Organization</th>
<th>Address</th>
<th>City</th>
<th>Zip</th>
<th>Telephone</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Robin Denson</td>
<td>Executive Director</td>
<td>The Alabama Bike Coalition</td>
<td>211 Shamrock Drive</td>
<td>Madison, MS</td>
<td>35758</td>
<td>334-233-2012</td>
<td>robin.deason@knology.net</td>
</tr>
<tr>
<td>Dr. Robin Denson</td>
<td>Project Manager</td>
<td>FAA Airport District Office</td>
<td>100 West Cross Street Suite</td>
<td>Birmingham</td>
<td>35209</td>
<td>205-770-3000</td>
<td></td>
</tr>
<tr>
<td>Judy Van Luchene</td>
<td>Executive Director</td>
<td>Federal Motor Carrier Safety</td>
<td>500 Eastern Boulevard Suite</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-834-3983</td>
<td>jvnluchene@fmsa.dot.gov</td>
</tr>
<tr>
<td>Judy Van Luchene</td>
<td>Project Manager</td>
<td>Alabama Trucking Association</td>
<td>P.O. Box 2339</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-834-3983</td>
<td></td>
</tr>
<tr>
<td>Voris Williams</td>
<td>Executive Assistant to the State Forester</td>
<td>Alabama Forestry Commission</td>
<td>64 North Union Street</td>
<td>Birmingham</td>
<td>35203</td>
<td>205-264-8448</td>
<td></td>
</tr>
<tr>
<td>Ron Gore</td>
<td>Chief, Air Division</td>
<td>Alabama Department of Conservation</td>
<td>1731 1st Ave. North</td>
<td>Montgomery</td>
<td>36110</td>
<td>334-204-5897</td>
<td></td>
</tr>
<tr>
<td>James McIndol</td>
<td>Chief, Water Division</td>
<td>Alabama Department of Management</td>
<td>1400 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36110</td>
<td>334-242-3965</td>
<td></td>
</tr>
<tr>
<td>M.N. Corky-Pugh</td>
<td>Director, Wildlife and Freshwater Fisheries</td>
<td>US Department of the Interior /</td>
<td>64 North Union Street</td>
<td>Montgomery</td>
<td>36110</td>
<td>334-213-2332</td>
<td></td>
</tr>
<tr>
<td>Wanda McCullers</td>
<td>Supervisor</td>
<td>USDA, US Forest Service</td>
<td>20113 Herndon Blvd.</td>
<td>Montgomery</td>
<td>36110</td>
<td>334-834-4470</td>
<td>wanda.mccullers@dcnr.alabama.gov</td>
</tr>
<tr>
<td>Athena P. Clark</td>
<td>Chief, Water Division</td>
<td>USDA, US Salinity Service</td>
<td>1400 Coliseum Blvd.</td>
<td>Montgomery</td>
<td>36110</td>
<td>334-242-3965</td>
<td></td>
</tr>
<tr>
<td>Gregory L. Hogue</td>
<td>Regional Environmental Officer</td>
<td>US Department of the Interior /</td>
<td>12201 Sunrise Valley Drive</td>
<td>Reston, VA</td>
<td>20192</td>
<td>703-648-7299</td>
<td></td>
</tr>
<tr>
<td>Gary Taylor</td>
<td>Executive Coordinator</td>
<td>US Department of the Interior /</td>
<td>2350 Fairlane Drive, Suite</td>
<td>Montgomery</td>
<td>36116</td>
<td>334-213-2332</td>
<td></td>
</tr>
<tr>
<td>Shannon Weaver</td>
<td>Environmental Coordinator</td>
<td>USDA / Soil Conservation</td>
<td>411 Briarwood Drive #404</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-887-4500</td>
<td></td>
</tr>
<tr>
<td>Bill Van Luchene</td>
<td>Environmental Coordinator</td>
<td>US Department of the Interior /</td>
<td>550 Eastern Boulevard Suite</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-887-4500</td>
<td></td>
</tr>
<tr>
<td>Julian Hudson</td>
<td>Area Office</td>
<td>US Department of the Interior /</td>
<td>411 Briarwood Drive #404</td>
<td>Montgomery</td>
<td>36117</td>
<td>334-887-4500</td>
<td></td>
</tr>
<tr>
<td>Shannon Weaver</td>
<td>Area Office</td>
<td>USDA / Soil Conservation</td>
<td>P.O. Box 311</td>
<td>Auburn</td>
<td>36830</td>
<td>334-887-4500</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Organization</td>
<td>Category</td>
<td>Address</td>
<td>City</td>
<td>Zip</td>
<td>Telephone</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Adam Snyder</td>
<td>Environmental</td>
<td>P.O. Box 13056</td>
<td>410 Commerce St</td>
<td>205 593-6176</td>
<td>Birmingham</td>
<td>35213</td>
<td>334 361-4722</td>
</tr>
<tr>
<td>Berry H. (Nick) Tew Jr.</td>
<td>President</td>
<td>State Geological & Oil and Gas Survey of Alabama</td>
<td>Environmental</td>
<td>P.O. Box 89999 432</td>
<td>Tuscaloosa</td>
<td>35460</td>
<td>334 844-4741</td>
</tr>
<tr>
<td>Kirk Kerssen</td>
<td>Fundraising Chair</td>
<td>Alabama Oil & Gas Board</td>
<td>Environmental</td>
<td>408 S. Perry Street</td>
<td>Mobile</td>
<td>36702</td>
<td>251 690-2556</td>
</tr>
<tr>
<td>John Apelman</td>
<td>President</td>
<td>National Soil Dynamics Lab</td>
<td>Environmental</td>
<td>115 Clinton Avenue West, Suite C</td>
<td>Huntsville</td>
<td>35801</td>
<td>259-479-1010</td>
</tr>
<tr>
<td>John Ackerman</td>
<td>Fundraising Chair</td>
<td>Sierra Club / Alabama Chapter</td>
<td>Environmental</td>
<td>P.O. Box 2288 108 St.</td>
<td>Mobile</td>
<td>36628</td>
<td>251 690-2556</td>
</tr>
<tr>
<td>Ed Osborne</td>
<td>State Historic Preservation Officer</td>
<td>State Geologist & Oil and Gas Survey of Alabama</td>
<td>Environmental</td>
<td>1208 B Main Street</td>
<td>Mobile</td>
<td>36628</td>
<td>251 690-2556</td>
</tr>
<tr>
<td>Lynne Berry</td>
<td>President</td>
<td>US Fish and Wildlife</td>
<td>Environmental</td>
<td>115 Clinton Avenue West</td>
<td>Huntsville</td>
<td>35801</td>
<td>259-479-1010</td>
</tr>
<tr>
<td>Elizabeth Brown</td>
<td>State Historic Preservation Officer</td>
<td>US Geological Survey of Alabama</td>
<td>Environmental</td>
<td>P.O. Box 2288 108 St.</td>
<td>Mobile</td>
<td>36628</td>
<td>251 690-2556</td>
</tr>
<tr>
<td>Jim Hayes</td>
<td>Economic Development President</td>
<td>Economic Development Partnerships of Alabama</td>
<td>Economic</td>
<td>4121 Carrickhill Road, Suite 601</td>
<td>Birmingham</td>
<td>35239</td>
<td>205 433-4700</td>
</tr>
<tr>
<td>Steve Pelham</td>
<td>State Director</td>
<td>USDA Rural Development</td>
<td>Economic</td>
<td>P.O. Box 4036 70</td>
<td>Eutaw</td>
<td>35460</td>
<td>205 372-7959</td>
</tr>
<tr>
<td>Phyllis Becher</td>
<td>President</td>
<td>Economic Development Association of Alabama</td>
<td>Economic</td>
<td>401 Adams Avenue, 6th Floor, Suite 601</td>
<td>Montgomery</td>
<td>36103</td>
<td>334 262-7932</td>
</tr>
<tr>
<td>Regina S. Pickorn</td>
<td>Executive Assistant</td>
<td>Economic Development Association of Alabama</td>
<td>Economic</td>
<td>401 Adams Avenue, 6th Floor, Suite 601</td>
<td>Montgomery</td>
<td>36103</td>
<td>334 262-7932</td>
</tr>
<tr>
<td>Neal Wade</td>
<td>Director</td>
<td>Economic Development Office</td>
<td>Economic</td>
<td>P.O. Box 2288 108 St.</td>
<td>Mobile</td>
<td>36628</td>
<td>251 690-2556</td>
</tr>
<tr>
<td>Thomas Harrison</td>
<td>Executive Director</td>
<td>Economic Development Office</td>
<td>Economic</td>
<td>P.O. Box 638 301</td>
<td>Dothan</td>
<td>36302</td>
<td>334 264-2112</td>
</tr>
<tr>
<td>Ginny Russell</td>
<td>Executive Director</td>
<td>Development</td>
<td>Economic</td>
<td>P.O. Box 2187 311</td>
<td>Mobile</td>
<td>36632</td>
<td>251 431-8618</td>
</tr>
<tr>
<td>Lynn Beshear</td>
<td>Executive Director</td>
<td>Development</td>
<td>Economic</td>
<td>P.O. Box 2187 311</td>
<td>Mobile</td>
<td>36632</td>
<td>251 431-8618</td>
</tr>
<tr>
<td>Karen Glover</td>
<td>Executive Coordinator</td>
<td>Development</td>
<td>Economic</td>
<td>P.O. Box 2187 311</td>
<td>Mobile</td>
<td>36632</td>
<td>251 431-8618</td>
</tr>
<tr>
<td>Envision Baldwin</td>
<td>Executive Director</td>
<td>Development</td>
<td>Economic</td>
<td>P.O. Box 2187 311</td>
<td>Mobile</td>
<td>36632</td>
<td>251 431-8618</td>
</tr>
<tr>
<td>Envision Baldwin</td>
<td>Executive Director</td>
<td>Development</td>
<td>Economic</td>
<td>P.O. Box 2187 311</td>
<td>Mobile</td>
<td>36632</td>
<td>251 431-8618</td>
</tr>
<tr>
<td>Envision Baldwin</td>
<td>Executive Director</td>
<td>Development</td>
<td>Economic</td>
<td>P.O. Box 2187 311</td>
<td>Mobile</td>
<td>36632</td>
<td>251 431-8618</td>
</tr>
<tr>
<td>Envision Baldwin</td>
<td>Executive Director</td>
<td>Development</td>
<td>Economic</td>
<td>P.O. Box 2187 311</td>
<td>Mobile</td>
<td>36632</td>
<td>251 431-8618</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Organization</td>
<td>Representation Category</td>
<td>Address</td>
<td>City</td>
<td>Zip</td>
<td>Telephone</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Tommy Johnson</td>
<td>Chairman</td>
<td>Commission on Infrastructure & Capital Projects</td>
<td>Category A</td>
<td>1700 Central Plaza Road</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-514-3484</td>
</tr>
<tr>
<td>Robert H. Pruitt</td>
<td>Director of Economic Affairs</td>
<td>Alabama Department of Economic & Community Affairs</td>
<td>Category B</td>
<td>P.O. Box 2464</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-4803</td>
</tr>
<tr>
<td>Dr. Billy Powell</td>
<td>Executive Vice President</td>
<td>Alabama Cattlemen's Association</td>
<td>Category C</td>
<td>201 S. Adams Avenue</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-252-6000</td>
</tr>
<tr>
<td>Lee Sells</td>
<td>Field Director of Travel</td>
<td>Alabama Department of Transportation & Travel</td>
<td>Category D</td>
<td>401 Adams Avenue Suite 226</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8000</td>
</tr>
<tr>
<td>Cindy Yarbrough</td>
<td>Vice President of Urban Development</td>
<td>Alabama Power Company</td>
<td>Category E</td>
<td>649 Monroe Street</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>Greg Baker</td>
<td>Commissioner</td>
<td>Alabama Department of Agriculture & Industrial Affairs</td>
<td>Category F</td>
<td>5585 Adams Ave</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-252-5256</td>
</tr>
<tr>
<td>Phyllis K. Kennedy</td>
<td>Director</td>
<td>Crenshaw County Economic Development Authority, Inc.</td>
<td>Category G</td>
<td>6419 Monroe Street</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>Robyn Snellgrove</td>
<td>Assistant Director</td>
<td>Crenshaw County Economic Development Authority, Inc.</td>
<td>Category H</td>
<td>P.O. Box 4</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>George Clark</td>
<td>President</td>
<td>Manufacture Alabama</td>
<td>Category I</td>
<td>401 Adams Avenue Suite 710</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>Buddy Sharpless</td>
<td>Executive Director</td>
<td>Alabama Association of County Commissioners</td>
<td>Category J</td>
<td>100 North Jackson Street</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>Perry Roquemore</td>
<td>Executive Director</td>
<td>Alabama League of Municipalities</td>
<td>Category K</td>
<td>5303 Gordon Persons Blvd.</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>Joe Lightsey</td>
<td>State Superintendent of Education</td>
<td>Alabama Department of Education</td>
<td>Category L</td>
<td>50 North Ripy Street</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>John B. Morton</td>
<td>State Agency Coordinator of Security</td>
<td>Alabama Department of Homeland Security</td>
<td>Category M</td>
<td>P.O. Box 304, Suite 115</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-253-8200</td>
</tr>
<tr>
<td>Sheri L. Godby</td>
<td>Chairman</td>
<td>Governor's Commission for Action in Alabama's Black Belt</td>
<td>Category N</td>
<td>401 Adams Avenue Suite 480</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-832-3316</td>
</tr>
<tr>
<td>Fernando Martinez</td>
<td>Education Outreach Director</td>
<td>Hispanic Interest Coalition of Alabama</td>
<td>Category O</td>
<td>P.O. Box 19229</td>
<td>Montgomery</td>
<td>36104</td>
<td>334-832-3316</td>
</tr>
<tr>
<td>Buford L. Rollin</td>
<td>Chairman</td>
<td>Poarch Creek Indians</td>
<td>Category P</td>
<td>5811 Jack Springs Road</td>
<td>Atmore</td>
<td>36502</td>
<td>251-388-9136</td>
</tr>
<tr>
<td>Organization</td>
<td>Name</td>
<td>Title</td>
<td>Representation Category</td>
<td>Address</td>
<td>City</td>
<td>Zip</td>
<td>Telephone</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>---------------</td>
<td>----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Alabama Disabilities Action Coalition</td>
<td>Alabama Disabilities Action Coalition Chairman</td>
<td>Chairman</td>
<td>Disabled</td>
<td>206 13th Street South</td>
<td>Birmingham</td>
<td>35233</td>
<td></td>
</tr>
<tr>
<td>Alabama Department of Senior Services</td>
<td>Irene Collins</td>
<td>Executive Director</td>
<td>Senior Citizens</td>
<td>770 Washington Ave. RSA Plaza Suite 470</td>
<td>Montgomery</td>
<td>36130</td>
<td></td>
</tr>
<tr>
<td>State Rehabilitation Council</td>
<td>Graham Sisson, Jr.</td>
<td>Assistant Attorney General</td>
<td>Disabled</td>
<td>4249 Woodvale Road</td>
<td>Birmingham</td>
<td>35222</td>
<td></td>
</tr>
<tr>
<td>Echota Cherokee Tribe of Alabama</td>
<td>Charlotte S. Hallmark</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>P.O. Box 830</td>
<td>Vinemont</td>
<td>35179</td>
<td>256 734-7337</td>
</tr>
<tr>
<td>Cherokee Tribe of Northeast Alabama</td>
<td>Cindy Samples</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>P.O. Box 352</td>
<td>Douglas</td>
<td>35964</td>
<td>256 593-8102</td>
</tr>
<tr>
<td>Ma-Chis Lower Creek Indian Tribe of Alabama</td>
<td>James C. Wright</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>P.O. Box 7</td>
<td>New Brockton</td>
<td>36351</td>
<td>334 894-0108</td>
</tr>
<tr>
<td>Star Clan of Muscogee Creeks</td>
<td>C. Scott Sanders</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>242 County Road 2254</td>
<td>Troy</td>
<td>36079</td>
<td>334 285-2491</td>
</tr>
<tr>
<td>Cher-O-Creek Intra Tribal Indians</td>
<td>Raymond (Dick) Hull</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>P.O. Box 717</td>
<td>Dothan</td>
<td>36302</td>
<td></td>
</tr>
<tr>
<td>Mowa Band of Choctaw Indians</td>
<td>Wilford Taylor</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>1080 Red Fox Road</td>
<td>Mount Vernon</td>
<td>36560</td>
<td>251 829-5500</td>
</tr>
<tr>
<td>United Cherokee Ani-Yun-Wiya Nation</td>
<td>Gina Williamson</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>6407 Jarmon Road</td>
<td>Guntersville</td>
<td>35976</td>
<td>256 582-2333</td>
</tr>
<tr>
<td>Alabama Indian Affairs Commission</td>
<td>Benjamin Moreira</td>
<td></td>
<td>Environmental Justice</td>
<td>P.O. Box 717</td>
<td>Montgomery</td>
<td>36130</td>
<td>334 242-2831</td>
</tr>
<tr>
<td>Piqua Shawnee Tribe</td>
<td>Guy Hunt</td>
<td>Chief</td>
<td>Environmental Justice</td>
<td>3412 Wellford Circle</td>
<td>Birmingham</td>
<td>35226</td>
<td></td>
</tr>
<tr>
<td>Alabama Indian Affairs Commission</td>
<td>Lagayis Harbuck</td>
<td>Governor’s Appointee</td>
<td>Environmental Justice</td>
<td>2680 Shenandoah Court</td>
<td>Mobile</td>
<td>36695</td>
<td>251-366-5435 251-586-1457</td>
</tr>
<tr>
<td>Alabama Indian Affairs Commission</td>
<td>Sen. Pat Lindsey</td>
<td>Lt Governor’s Appointee</td>
<td>Environmental Justice</td>
<td>11 South Union Street Suite 721</td>
<td>Montgomery</td>
<td>36130</td>
<td>334 242-7847</td>
</tr>
<tr>
<td>ARISE Citizen’s Policy Project</td>
<td>Ron Gilbert</td>
<td></td>
<td>Citizens Representative</td>
<td>P.O. 1188</td>
<td>Montgomery</td>
<td>36101</td>
<td>334 832-9060</td>
</tr>
</tbody>
</table>