

Long-Term Monitoring Plan

Coliseum Boulevard Plume Site Montgomery, Alabama

Submitted By:

Alabama Department of Transportation 1409 Coliseum Boulevard Montgomery, Alabama

September 2008 R1 – October 2011 R2 – September 2012 R3 – September 2014 R4 – June 2019 (r-7/10/2020) Long-Term Monitoring Plan

COLISEUM BOULEVARD PLUME SITE MONTGOMERY, ALABAMA

SUBMITTED BY:

ALABAMA DEPARTMENT OF TRANSPORTATION 1409 COLISEUM BOULEVARD MONTGOMERY, ALABAMA

September 2008 R1 – October 2011 R2 – September 2012 R3 – September 2014 R4 – June 2019 (r-7/10/2020)

TABLE OF CONTENTS

<u>1. Intr</u>	DDUCTION	1-1				
1.1.	PURPOSE	1-1				
1.2.	BACKGROUND					
<u>2. Deve</u>	ELOPMENT OF THE LONG-TERM MONITORING NETWORK	2-1				
2.1.	ASSESSMENT MONITORING NETWORK					
	2.1.1. SHALLOW MONITORING WELLS					
	2.1.2. DEEP MONITORING WELLS					
2.2.	LONG-TERM MONITORING NETWORK DESIGN					
	2.2.1. MONITORING NETWORK OPTIMIZATION					
	2.2.2. SPATIAL ANALYSIS (WELL LOCATIONS)2.2.3. TEMPORAL ANALYSIS (OPTIMUM SAMPLE COLLECTION SCHEDULE)					
	2.2.4. TREND ANALYSIS (OPTIMUM SAMPLE COLLECTION SCHEDULE)					
2.3.	EFFECTIVENESS WELL OPTIMIZATION					
2.4.	BOUNDARY WELL NETWORK					
2.5	SURFACE WATER MONITORING NETWORK	2-7				
2.0.	2.5.1. CORRECTIVE MEASURE MONITORING					
	2.5.1.1. COMPLIANCE SAMPLE LOCATIONS	2-7				
	2.5.1.2. EFFECTIVENESS SAMPLE LOCATIONS					
	2.5.1.3. VOLUNTARY SAMPLE LOCATIONS	2-9				
<u>3. Lond</u>	G-TERM MONITORING	3-1				
3.1.	SAMPLING PROCEDURES	3-1				
3.2.	EFFECTIVENESS MONITORING AND DATA ANALYSIS	3-1				
	3.2.1. EFF MONITORING WELL TREND ANALYSIS	3-1				
	3.2.2. EFF MONITORING WELL CONCENTRATION LIMITS					
	3.2.3. EFF MONITORING WELL DATA ANALYSIS	3-2				
3.3.	BDY MONITORING WELL DATA ANALYSIS					
3.4.	. SURFACE WATER COMPLIANCE MONITORING					
3.5.	VAPOR INTRUSION EVALUATION					
	3.5.1. RISK-BASED TARGET LEVELS					
	3.5.2. RISK-BASED TARGET LEVEL EVALUATION	3-5				
<u>4. Rерс</u>	DRTING	4-1				
4.1.	GROUNDWATER MONITORING REPORTS					
4.2.	CORRECTIVE ACTION REPORTING	4-1				
4.3.	SURFACE WATER REPORTING					
5. Refe	RENCES	5-1				

TABLES

- 2-1 Assessment Monitoring Wells and Piezometers
- 2-2 Effectiveness, Boundary, and Background Well Network
- 2-3A Semi-Annual (First Quarter and Third Quarter) Sampling Program; Effectiveness and Boundary Monitoring Wells
- 2-3B Annual (First Quarter-only) Sampling Program; Effectiveness and Background Monitoring Wells
- 3-1 EFF Well Concentration Action Limits
- 3-2 Boundary Well COC Action Limits
- 3-3 Surface water Sample Locations
- 3-4 Vapor Intrusion Screening Groundwater Monitoring Wells

FIGURES

- 1-1 Coliseum Boulevard Plume Corrective Measures Areas
- 1-2A Overview of Reports and Monitoring Plans
- 1-2B Overview of Annual and Special Reports
- 2-1 Long Term Groundwater Monitoring Wells
- 2-2 Long Term Monitoring Program Wells First Quarter Event
- 2-3 Long Term Monitoring Program Wells Third Quarter Event
- 2-4 ZP, ZD, and LLA Surface Water Monitoring Locations
- 2-5 Southwest Area Surface Water Monitoring and Compliance Locations
- 3-1 Effectiveness Well Network Evaluation Process
- 3-2 Boundary Well Network Evaluation Process
- 3-3 Vapor Intrusion Screening Groundwater Wells
- 3-4 VIS Well with Calculated RBTL Evaluation Process

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

ADEM AEIRG ALDOT ARBCA BDY	Alabama Department of Environmental Management Alabama Environmental Investigation and Remediation Guidance Alabama Department of Transportation Alabama Risk-Based Corrective Action Boundary (Well)
CBP	Coliseum Boulevard Plume
CME	Corrective Measures Evaluation
CMIP	Corrective Measures Implementation Plan
CP	Compliance Point
CMT	Continuous Multi-channel Tubing Well
EFF	Effectiveness (Well)
EPA	Environmental Protection Agency
GTS	Geostatistical, Temporal, and Spatial
ICB	Institutional Control Boundary
LTM	Long-term Monitoring Plan
MCL	Maximum Contaminant Level
NPDES	National Pollutant Discharge Elimination System
OS	Off Site
PH12	Probehole 12 Area
RBTL	Risk Based Target Level
RSL	Regional Screening Level
SWA	South West Treatment Area
TCE	Trichloroethylene
VIS	Vapor Intrusion Screening (Well)
VISL	Vapor Intrusion Screening Level

SECTION 1 INTRODUCTION

1. INTRODUCTION

1.1. PURPOSE

The Voluntary Settlement Agreement between the Alabama Department of Environmental Management (ADEM) and the Alabama Department of Transportation (ALDOT) for the Coliseum Boulevard Plume (CBP) was executed in December 2011. The Agreement required the submittal and approval of four (4) Corrective Measures Implementation Plans (CMIPs), as follows:

- Kilby Ditch/Low-Lying Area CMIP
- Institutional Control Plan
- Long-Term Monitoring (LTM) Plan
- Southwest Treatment Area CMIP

Each of these plans have been approved by ADEM and implemented by ALDOT. The LTM Plan provides the procedures that ALDOT will utilize to comply with the amended "Settlement Agreement for Voluntary Response ("Agreement") between ADEM and ALDOT, effective March 10, 2015.

The LTM Plan provides for monitoring in areas where corrective measures have been implemented (Kilby Ditch / Low-Lying Area, Southwest Area, Institutional Control Boundary), see Figure 1-1. The LTM monitoring will be used to:

- Evaluate the effectiveness of the corrective measures;
- Monitor TCE concentrations and trends for comparison to the site-wide groundwater model; and,
- Provide a surface water monitoring network to evaluate the effectiveness of corrective measures and determine compliance with ADEM discharge requirements.

The LTM Plan also provides for long-term monitoring of the CBP with:

- Effectiveness (EFF) monitoring wells to evaluate groundwater, plume conditions, and the potential for vapor intrusion;
- Boundary (BDY) monitoring wells to assure the CBP is bounded by the Institutional Control Boundary (ICB); and,

Surface water compliance and effectiveness monitoring locations to determine compliance and corrective measure effectiveness.

Additionally, the LTM Plan documents the transition of the CBP monitoring network from an assessment-oriented monitoring program to a corrective measure monitoring program in accordance with the Agreement. Section 2 presents the proposed groundwater and surface water monitoring locations. Section 3 presents the monitoring and data evaluation plan.

1.2. BACKGROUND

The CBP is an area in north Montgomery, Alabama where the shallow groundwater contains trichloroethylene (TCE). Groundwater remains below the ground surface throughout the CBP except for three areas where groundwater discharges to surface water: Kilby Ditch / Low-Lying Area in the northeast part of the CBP; the ALDOT-owned former sand and gravel mine in the Southwest part of the CBP; and the Zoo pond / Zoo ditch in the northern part of the CBP. The ALDOT has accepted responsibility for monitoring and management of the CBP by remedial approaches that generally include the following:

- Manage and control groundwater at the CBP;
- Treat TCE-containing surface water prior to discharge from the CBP;
- Restrict access to groundwater via institutional controls; and,
- Restrict access to surface water via engineering controls.

ALDOT has implemented the following response actions as described in the "Site-Wide Corrective Measures Evaluation Report, July 2008" (CME):

- Cover West Kilby Ditch and stabilize Main Kilby Ditch;
- Retain or reposition security fencing along Main Kilby Ditch;
- Construct a Wetland Treatment System and perimeter security fencing in the Low-Lying Area;
- Hydraulic control in the Southwestern Area of the CBP;
- Monitor surface water and groundwater quality; and,
- Implement institutional controls to restrict access to and prevent use of groundwater.

Alabama Department of Transportation Long-Term Monitoring Plan Revision 4 – June 2019 (r-4/17/2020)

Figures 1-2A and 1-2B present an overview of the investigations, Corrective Measures Implementation Plans, and annual reports that support the development of the LTM Plan. Reports document the nature and extent of the CBP through the soil, sediment, soil vapor, air, groundwater and surface water. Corrective Measures Implementation Plans present actions by ALDOT to prevent access to groundwater through administrative and engineering controls. Quarterly status reports were prepared to document assessment and construction activities and effectiveness of implemented corrective measures. Following completion of construction, Annual reports are submitted to document effectiveness of the corrective measures.

2. DEVELOPMENT OF THE LONG-TERM MONITORING NETWORK

2.1. ASSESSMENT MONITORING NETWORK

The monitoring well network used to assess the CBP consisted of 150 wells and 40 piezometers (Table 2-1). Effectiveness (84 wells), Boundary (14 wells), and Background wells (2 wells) are listed on Table 2-2. Surface water monitoring is performed throughout the CBP. Both groundwater and surface water results have been presented in investigation and status reports that document CBP assessment activities.

2.1.1. SHALLOW MONITORING WELLS

100-Series and 200-Series monitoring wells were constructed to determine the horizontal and vertical extents of the TCE within the shallow saturated zone. This zone, which is described in the July 2008 CME Report, is the saturated zone above the first distinct clay beneath the water table. The 100-Series wells screen the upper part of this shallow saturated zone. The 200-Series wells screen the middle and lower parts of this shallow saturated zone. Many of the shallow-zone monitoring wells are in clusters with screens that are 5 to 10 feet long and monitor the upper, middle, and lower part of the shallow saturated zone. Continuous multichannel tubing (CMT) wells were constructed to assess the vertical distribution of TCE in the area of Fairgrounds Road and Broadway Street. This is the area of higher TCE concentrations in the CBP. Pump test and observation wells were installed for aquifer testing to gather pertinent information and development of a site-specific groundwater model.

2.1.2. **DEEP MONITORING WELLS**

Nine (9) deep monitoring wells are within the CBP. Eight (8) 300-Series monitoring wells are screened within the deep saturated zone, which is the water-bearing unit between the first distinct clay and the top of the underlying Gordo Formation. The ninth deep monitoring well, a 400-Series well, is screened in the upper Gordo Formation. Deep monitoring well locations are as follows:

 Monitoring wells MW-339 through MW-342 are within the Fairgrounds Road and Broadway Street Area;

- Monitoring well MW-311 is within the southwest part of the CBP;
- Monitoring wells MW-357 and MW-457 are near a former production-well that was at the Montgomery Zoo;
- Monitoring well MW-304 is on ALDOT property at the main ALDOT complex and near Coliseum Boulevard, and;
- Monitoring well MW-358 is at the Bama Budweiser of Montgomery, Inc. facility (1700 Emory Folmar Boulevard) within the northeast portion of the CBP.

2.2. LONG-TERM MONITORING NETWORK DESIGN

2.2.1. MONITORING NETWORK OPTIMIZATION

In accordance with the Agreement, the monitoring network required transition from an assessment monitoring network to a corrective measures monitoring network. Spatial, trend, temporal, and qualitative analyses were used to evaluate the assessment monitoring well network and transition it to a long-term, corrective measures network.

2.2.2. SPATIAL ANALYSIS (WELL LOCATIONS)

TCE spatial analysis was performed through evaluation of TCE distributions throughout the CBP and correlation of TCE concentrations between monitoring wells. This analysis resulted in identifying the optimum number of wells and well locations for corrective measures monitoring. A quantitative analysis was conducted by using "spatial tolerance" to determine if a monitoring well should be used for long-term monitoring.

Spatial tolerance is used to associate a level of precision with spatial data and reflects the distance that two or more points can be apart and still represent the same area. The method reduces the number of monitoring wells in a point dataset but identifies the best monitoring well distribution to monitor TCE. Spatial tolerance analysis was performed separately for 100-Series and 200-Series wells, and the following steps were performed to select long-term monitoring wells:

1. Series-100 and Series-200 assessment monitoring well data were removed, one at a time, from the assessment monitoring well network. After removal of the monitoring well data, the TCE concentrations were re-contoured.

- 2. The interpolated (contoured) value (TCE concentration) at each eliminated monitoring well location was compared to the original TCE concentrations that were contoured with the monitoring well data not removed.
- 3. The monitoring well was selected for potential removal from the long-term network if the absolute difference between the interpolated TCE concentration and the original value was minimal, and the TCE contouring resolution was retained.
- 4. An optimized monitoring well system that horizontally and vertically defined the CBP and retained TCE contouring resolution similar to that of the original 150 well network was proposed for Long Term Monitoring. The optimized monitoring well system is referred to as the Effectiveness Monitoring Well Network (EFF monitoring well).

The following 64 of the original 150 assessment monitoring wells were removed from the EFF monitoring well network:

- 15 "100A/200B/200C-Series" monitoring wells
- 20 "100/200-Series Cluster" monitoring wells
- 9 "Pump Test" and "Observation" monitoring wells
- 13 "A-Series" monitoring wells
- 7 "CMT" Wells.

As approved by the ADEM on August 23, 2011, the seven CMT wells were permanently abandoned as described in the "Boundary Well Installation and Continuous Multichannel Tubing Well Abandonment Plan" dated June 2011.

All nine (9) "deep" wells were retained as EFF monitoring wells (eight 300-Series wells and one 400-Series well).

100-Series and 200-Series monitoring wells were analyzed separately; however, some 100-Series and 200-Series monitoring wells are nested pairs. If either one of the 100- or 200-Series well was retained as an EFF monitoring well as a result of spatial analysis, both the 100- or 200-Series monitoring wells were retained as an EFF monitoring wells. Table 2-2 summarizes the EFF monitoring wells.

Figure 2-1 shows the 100-, 200-, 300-, and 400-Series wells that comprise the EFF monitoring well network.

To summarize, 84 of the 150 assessment monitoring wells were retained as EFF monitoring wells plus 2 as Background wells for long-term water quality monitoring of the CBP.

The 64 assessment monitoring wells eliminated from the EFF monitoring well network and water-quality monitoring are retained for measurements of water levels, with the exception of the seven (7) CMT Wells that were plugged and abandoned in October 2011. Additionally, piezometers used for water level measurements and groundwater elevation mapping are retained (see Table 2-1).

2.2.3. **TEMPORAL ANALYSIS (OPTIMUM SAMPLE COLLECTION** SCHEDULE)

The optimum sampling schedule for the EFF monitoring well network was updated in revision 4 of the LTM (June 2019) by using trend analysis of historical data. The temporal analysis included evaluating the TCE trend for all EFF monitoring wells and optimizing the sampling frequency based on the results.

2.2.4. TREND ANALYSIS

Trend analysis was used to analyze water quality data for increasing or decreasing trends and to confirm plume movement predicted by conceptual and numeric groundwater models. Trend analysis has been conducted annually for groundwater data collected from the assessment monitoring well network and submitted to ADEM (Coliseum Boulevard Plume Analysis of TCE Trends, Annual Reports). The results consistently show decreasing trends or no trends in TCE concentrations for a majority of the EFF monitoring wells.

To re-assess sampling frequency, trend analysis was completed for the 22 EFF wells that have been sampled semi-annually under revision 3 (September 2014) of the LTM Plan. Trend statistics were calculated using the Shewhart Statistic for all samples (semi-annual, first quarter and third quarter samples) and compared to the trend statistics for results from the first quarter sampling only (annual). TCE was not detected in four of the EFF wells (MW-123, MW-221, MW-262, and MW-358) plus the two background wells for the duration of

the Long Term Monitoring program (2011 through 2018) and were not included in the trend analysis. There was no change in the trend statistics for any of the remaining 18 EFF wells at the annual sampling frequency. Semi-annual sampling does not change the results or conclusions compared to annual sampling and is not needed to assess effectiveness of the remedy.

Based on the sampling frequency re-assessment, the time between sampling events can be modified to annually (first quarter only) for the EFF and Background wells. Boundary wells will continue to be monitored semi-annually. A subset of the shallow effectiveness wells is also designated as Vapor Intrusion Screening (VIS) monitoring wells. VIS wells with calculated Risk Based Target Levels (RBTLs) will be monitored semi-annually. VIS wells are described in Section 3.5.

2.3. EFFECTIVENESS WELL OPTIMIZATION

As part ALDOT's on-going monitoring program, ALDOT monitored quarterly from 2001 through 2011 and semiannually since 2011. With implementation of remedial measures, the size of the CBP decreased by 20 percent between 2009 and 2018. As expected, increases in TCE concentrations have been documented in the annual trend reports along the northeast/southwest plume axis due to the capture of TCE from the PH12 area at the SWTA. Based on the reassessment of the trends based on annual versus semi-annual sampling frequency, a semi-annual sampling frequency for the EFF wells do not provide useful information above the annual sampling frequency. As such, and based on consultations with ADEM, ALDOT proposes a revised monitoring schedule:

list semi-annual penoù (Filst Qualter)					
Well Types	Number of Wells				
Background Wells	2				
Boundary Wells	14				
Effectiveness Wells	84 ¹				

First semi-annual period (First Quarter)

Well Types	Number of Wells
Background Wells	0
Boundary Wells	14
Effectiveness Wells	VIS wells ²

¹ Includes Effectiveness wells that are also designated as VIS wells (see Section 3.5).

² Only VIS wells with established RBTLs will be sampled Third Quarter (see Section 3.5).

Specific monitoring wells to be included in the optimized monitoring program are included in Tables 2-3A and 2-3B. The semi-annual and annual sample locations are shown on Figures 2-2 and 2-3.

Based on future long-term monitoring results, the well network optimization will be continuously evaluated using the following general parameters:

- Wells with TCE groundwater concentrations below the groundwater protection standard;
- Wells with either a stable or decreasing TCE concentration trend based on the annual trend evaluation;
- Wells in an area of low advection where the groundwater is moving very slowly relative to the northeast and southwest areas of the CBP, and annual monitoring is sufficient to characterize changes in concentration, and;
- Other spatial or temporal conditions that may support modification to the sample frequency, number of monitored wells and/or well locations.

2.4. BOUNDARY WELL NETWORK

A Boundary Well (BDY) Network of 14 BDY monitoring wells was installed in October 2011 to monitor the effectiveness of corrective measures and institutional controls. The BDY Well Network design relied upon the site-wide groundwater model to identify groundwater flow paths and probable TCE migration pathways relative to the position of institutional control parcels and corrective measures. As approved by the ADEM on August 23, 2011, the BDY monitoring wells were installed and sampled as described in the "Boundary Well Installation and Continuous Multichannel Tubing Well Abandonment Plan" dated June 2011. BDY wells are shown on Figure 2-1.

2.5. SURFACE WATER MONITORING NETWORK

2.5.1. CORRECTIVE MEASURE MONITORING

Surface water monitoring will be performed to verify the effectiveness of corrective measures and to determine if surface-water quality meets compliance requirements.

2.5.1.1. COMPLIANCE SAMPLE LOCATIONS

In accordance with the Agreement, surface-water compliance points are at the:

- 1. confluence of the Lower Kilby Ditch with Three Mile Branch (LLCP-1); and,
- 2. NPDES permitted discharge in the Southwest Area (SWA DSN001)

Alabama Department of Transportation Long-Term Monitoring Plan Revision 4 – June 2019 (r-4/17/2020)

Samples will be collected at these two (2) locations every two weeks in accordance with the National Pollutant Discharge Elimination System (NPDES) permit and the Settlement Agreement. The TCE regulatory compliance limits are stipulated in the existing NPDES permit and the Agreement (see Figures 2-4 and 2-5). On July 31, 2013, surface water compliance point DSN001 was relocated to the end of the riprap ditch, at the former location of SWA-5. The former location of DSN001 was renamed FG (Flood Gate)(R3-September 2014).

2.5.1.2. EFFECTIVENESS SAMPLE LOCATIONS

Samples will be collected quarterly at the following locations to monitor surface- water quality throughout the CBP (see Table 3-3).

WETLAND EAST OF BAMA BUDWEISER FACILITY

One surface water monitoring point will be located at the wetland located east of the Bama Budweiser facility (BB, see Figure 2-4).

LOW-LYING AREA AND THREE MILE BRANCH

This monitoring will include samples collected from LLA-1 through LLA-11 in the Lower Kilby Ditch area and the Wetland Treatment Area (see Figure 2-4). Samples will also be collected from Three Mile Branch (see Figure 2-4). Samples will be collected at the following locations:

- LLA-1 Upstream of constructed wetland;
- LLA-2 Discharge from constructed wetland;
- LLA-3 Internal constructed wetland;
- LLA-4 Small tributary south of existing wetland;
- LLA-5 Groundwater interceptor trench pond;
- LLA-6 Groundwater interceptor trench before confluence with Lower Kilby Ditch;
- LLA-7 Lower Kilby Ditch after confluence with groundwater interceptor trench;
- LLA-8 Existing wetland;

- LLA-9 Unnamed tributary immediately south of Northern Boulevard
- LLA-10 Surface water south of Northern Boulevard groundwater seeps from west of unnamed tributary
- LLA-11 Discharge from Russell Distribution facility stormwater/groundwater
- TMB-1 Three Mile Branch upstream of the confluence with Lower Kilby ditch;
- TMB-2 Three Mile Branch upstream of the confluence with Lower Kilby Ditch at North Boulevard;
- TMB-3 Three Mile Branch downstream of the confluence with the Lower Kilby Ditch.

MONTGOMERY ZOO POND AND DITCH

Surface water monitoring samples will continue to be collected from the Montgomery Zoo pond (ZP) and ditch (ZD) (see Figure 2-4).

SOUTHWEST AREA

Surface water monitoring in the Southwest Area will be conducted at the following locations (see Figure 2-5):

- SWA-1: Dewatering Pond
- SWA-2: Transfer Pond
- SWA-3: Inlet structure at Discharge Pond from Transfer Pond
- SWA-4: Outlet structure at Discharge Pond

2.5.1.3. VOLUNTARY SAMPLE LOCATIONS

ALDOT monitors surface water at locations FG and O1 (see Figure 2-5) on a voluntary basis. Both sample locations are downstream from compliance point DSN001. Samples collected at FG are used to monitoring water quality discharged to the city of Montgomery storm water conveyance to Cypress Creek. Water quality from storm water entering the natural wetlands along portions of Lower Wetumpka Road is monitored at O1. ALDOT has elected to continue voluntary monitoring at these locations; however, these sample locations may be discontinued in the future.

3. LONG-TERM MONITORING

3.1. SAMPLING PROCEDURES

Sampling during long-term monitoring will be in general accordance with the accepted procedures as outlined in the most recent guidance published by ADEM and/or the EPA (see LTM Technical Memorandum for Groundwater Sampling Methods). These documents include:

- The most recent version of the Alabama Environmental Investigation and Remediation Guidance (AEIRG);
- EPA Region 4 Science and Ecosystem Support Division (SESD) Field Branches Quality System and Technical Procedures; and,
- ALDOT Work Plans and Addendums approved previously by the ADEM.

3.2. EFFECTIVENESS MONITORING AND DATA ANALYSIS

3.2.1. EFF MONITORING WELL TREND ANALYSIS

Samples will be collected annually from the EFF monitoring wells. Time-series plots and intrawell Shewhart-Cumulative Sum (CUSUM) control charts will be used annually to evaluate trends in TCE concentrations for each EFF monitoring well. Time-series plots will also provide for visual interpretations of trends. Trends will be evaluated only for wells where TCE was detected for a sufficient number of sampling events (four consecutive events above the laboratory method detection limit) to develop valid trends.

The site-wide groundwater model was used to predict the maximum TCE concentrations at each EFF monitoring well through year 2039. Each EFF monitoring well was assigned a TCE concentration limit based on the model-predicted TCE concentration at the well through 2039 (see Table 3-1). In the event that a new EFF monitoring well is needed, a TCE concentration limit will be developed for the new EFF monitoring well based on the modeled concentration at the EFF monitoring well location.

A site-wide model verification review will be conducted every five (5) years. Data collected from annual sampling events will be used to verify the Site-wide model, evaluate effectiveness of corrective measures, and evaluate the sample collection frequency.

3.2.2. **EFF MONITORING WELL CONCENTRATION LIMITS**

The TCE concentration limit is the maximum concentration expected to be detected for each EFF monitoring well based on the site-wide groundwater model. TCE concentration limits have been developed for each EFF monitoring well. The TCE concentration in the groundwater sample from each EFF monitoring well will be compared to the model-predicted TCE concentration limit at the EFF monitoring well (see Table 3-1).

3.2.3. EFF MONITORING WELL DATA ANALYSIS

In accordance with the Agreement, sample results from EFF monitoring wells will be compared to the EFF concentration limit for each EFF Well (see Table 3-1 and Figure 3-1). Action items based on this comparison are:

- 1. Sample results below the EFF concentration limit for the monitoring well indicate that the TCE concentrations are within the site-wide groundwater model calculated values and no additional assessment or corrective measures are required. Annual sampling at the EFF monitoring well will continue.
- 2. If a sample result from an EFF monitoring well exceeds the TCE concentration limit for the EFF monitoring well, a verification sample will be collected from the EFF monitoring well and analyzed within 30 days of ALDOT's receipt of the final laboratory data from the annual sampling event.
- 3. If the TCE concentration in the verification sample is below the TCE concentration limit for the EFF monitoring well, annual monitoring will resume. ALDOT will include all verification sample results to ADEM in the Annual Report (see Section 4).
- 4. If the TCE concentration in the verification sample is greater than the TCE concentration limit for the EFF monitoring well, ALDOT will notify ADEM of the verified exceedance within 30 days of receipt of the final laboratory data. The ALDOT notification letter report will include results of the annual

sampling, verification sampling, and notification that ALDOT will begin quarterly sampling at the EFF monitoring well.

5. ALDOT will collect samples for four (4) consecutive quarters from the EFF monitoring well showing a verified exceedance. If TCE concentrations remain below the TCE concentration limit in the EFF monitoring well during the four consecutive quarterly sampling events, quarterly monitoring will cease and the sample collection schedule at the EFF monitoring well will return to annual. An assessment of an exceedance will be performed concurrently with quarterly monitoring.

The data analysis process and methodology for the EFF monitoring well network are presented in Figure 3-1. Table 3-1 provides the EFF monitoring well designation and TCE concentration limits.

3.3. BDY MONITORING WELL DATA ANALYSIS

BDY monitoring wells were sampled quarterly for the first year following installation, then semiannually. In accordance with the Agreement, the following criteria will be used to evaluate data collected from each BDY well:

- The concentration limit for the CBP constituents of concern will be the Alabama Drinking Water Standard maximum contaminant level (MCL) or Regional Screening Level (RSL) (Table 3-2).
- If a BDY monitoring well sample result exceeds an MCL or RSL for a CBP constituent of concern, a verification sample will be collected and analyzed within 30 days of receipt of the final laboratory data from the semiannual sampling event.
- Semiannual monitoring will resume if the CBP constituent of concern concentration is below the MCL or RSL in the verification sample. ALDOT will include all verification sampling results to ADEM in the Annual Report (see Section 4).
- 4. If the CBP constituent of concern concentration in the verification sample is greater than the MCL or RSL, ALDOT will notify ADEM of the verified exceedance within 30 days of receipt of final laboratory data. The ALDOT notification letter report will include results of the semiannual sampling,

verification sampling, and notification that ALDOT will begin quarterly sampling.

- 5. ALDOT will collect samples for the four consecutive quarters from the BDY monitoring well with an exceedance. If the CBP constituent of concern concentration remains below the MCL or RSL for the BDY monitoring well during the four consecutive quarterly sampling events, the BDY monitoring well will return to semiannual monitoring schedule.
- 6. An Assessment Plan to evaluate the groundwater within the part of the CBP where the exceedance occurred will be submitted to ADEM. The Assessment Plan will be implemented and the results reported on a mutually agreed schedule.
- 7. Corrective measures will be implemented if justified by the results of the Assessment. A corrective measure will be implemented to maintain control of the CBP by preventing the expansion of the CBP beyond the Institutional Control Boundary and/or include modification to the Institutional Control Program, as needed.

The data analysis process and methodology for the BDY monitoring well system are presented in Figure 3-2. Table 2-2 provides the BDY monitoring well designation. Table 3-2 provides the BDY well concentration limits (MCL or RSL) for each CBP constituent of concern.

3.4. SURFACE WATER COMPLIANCE MONITORING

Surface water samples will be collected every two weeks at the Kilby Ditch/Low-Lying Area and Southwest Area discharges. The surface water compliance monitoring schedule is provided in Table 3-3. Surface water compliance monitoring will be performed in accordance with the NPDES permit and the Agreement.

3.5. VAPOR INTRUSION EVALUATION

ALDOT has performed vapor intrusion assessment since 2002 and has provided vapor intrusion evaluation in Annual Reports, specifically Table 3-5 of each Annual Report. In 2017, ADEM in its Alabama Risk-Based Corrective Action (ARBCA) Guidance Manual (ADEM, 2017) adopted the use of the EPA Vapor Intrusion Screening Level (VISL) calculator to determine groundwater screening levels for

vapor intrusion. EPA and ADEM have made technical documents and tools available to support the ongoing development of its vapor intrusion evaluation programs (ADEM, 2017). ALDOT has incorporated the vapor intrusion evaluation procedures that are provided in the ARBCA to supplement the existing evaluation of the vapor intrusion pathway. These procedures include the following:

- Groundwater samples will be collected routinely from 24 of the EFF monitoring wells for vapor intrusion screening. This subset of 24 EFF monitoring wells are referred to as "VIS wells". VIS wells have screen intervals within three feet of the water table for screening TCE groundwater concentrations to VISLs. Each VIS well used for the vapor intrusion evaluation is representative of an undeveloped, residential, or commercial property. VIS wells are provided in Table 3-4 and shown in Figure 3-3.
- Groundwater concentrations during the current year will be compared to baseline TCE groundwater concentrations in the VIS wells. Baseline TCE concentrations in VIS wells were determined during previous vapor sampling and assessment completed in 2002. A summary table for comparisons of groundwater concentrations to baseline groundwater concentrations will be provided in each Annual Report.
- A residential or commercial VISL is calculated for TCE using the most recent edition of the EPA VISL calculator. TCE concentrations in each VIS well are compared to the VISLs. A summary table for comparisons of TCE concentrations to VISLs will be provided in each Annual Report.

3.5.1. **RISK-BASED TARGET LEVELS**

In accordance with the ARBCA, ALDOT will establish groundwater RBTLs for TCE in VIS wells that exceed the VISL and cumulative risk. RBTLs will be established using the ARBCA benchmarks for hazard index of 1.0 and cumulative risk of 1.0x10⁻⁵.

3.5.2. **RISK-BASED TARGET LEVEL EVALUATION**

ALDOT will collect groundwater samples from VIS wells with calculated RBTLs on a semi-annual schedule. A summary table of groundwater concentrations and comparisons to established RBTLs will be provided with each Annual Report. Although not required by the ARBCA, ALDOT will reevaluate RBTLs every five years to

coincide with the schedule for review and verification of the site-wide groundwater model.

- 1. RBTLs will be developed for VIS wells that exceed the VISL and cumulative risk.
- If a sample from a VIS monitoring well with a calculated RBTL exceeds the RBTL, a verification sample will be collected and analyzed within 30 days of receipt of the final laboratory data from the semiannual sampling event.
- 3. Semiannual monitoring will resume if the concentration is below the RBTL in the verification sample. ALDOT will include all verification sampling results to ADEM in the Annual Report.
- 4. If the concentration in the verification sample is greater than the RBTL, ALDOT will notify ADEM of the verified exceedance within 30 days of receipt of final laboratory data. The ALDOT notification letter report will include results of the semiannual sampling, verification sampling, and notification that ALDOT will begin quarterly sampling.
- 5. ALDOT will collect samples four consecutive quarters from the monitoring well with an exceedance. If the CBP constituent of concern concentration remains below the RBTL for the VIS monitoring well during the four consecutive quarterly sampling events, the VIS monitoring well will return to a semiannual monitoring schedule.
- 6. An Assessment Plan to evaluate the groundwater within the part of the CBP where the exceedance of the RBTL occurred will be submitted to ADEM. The Assessment Plan will be implemented and the results reported on a mutually agreed schedule.
- Corrective measures will be implemented if justified by the results of the Assessment. A corrective measure will be implemented to reduce risk from VI and/or include modification to the Institutional Control Program, as needed.

The data analysis process and methodology for the VIS monitoring wells with calculated RBTLs are presented in Figure 3-4.

4. REPORTING

ALDOT will report the effectiveness of the corrective action program annually. These reports will be submitted to ADEM on April 1st of each calendar year for data collected during the prior calendar year. The reports will include data from groundwater and surface water monitoring, an analysis of the data, and any conclusions regarding the effectiveness of the monitoring program. If the analysis of the data warrants any change to the corrective action program, ALDOT will include recommendations for revisions in the annual report.

4.1. GROUNDWATER MONITORING REPORTS

Analytical reports will include the analytical method and the method reporting limit (RL) for each constituent reported. ALDOT will maintain an archive of all Reports in accordance with the Institutional Control Program. Groundwater monitoring reports will include, but not be limited to, the following information:

- Detailed site history or reference to previously submitted site history.
- Descriptions of corrective measures activities and groundwater and surface water monitoring activities,
- A map of the groundwater monitoring system,
- Potentiometric surface maps,
- Isoconcentration maps,
- Tables of EFF and BDY monitoring well depths and elevations
- Descriptions of annual activities to include:
 - Trend analysis
 - Time vs. concentration plots
 - Comparisons of TCE concentrations to concentration
 limits
 - Vapor Intrusion Screening Level evaluation
 - Sampling procedures and protocol
 - Investigative derived waste management

4.2. CORRECTIVE ACTION REPORTING

At least 180 days prior to each ten-year anniversary of the effective date of the Agreement, ALDOT and ADEM will conduct a comprehensive review of the Long-Term Monitoring Plan and modify, if necessary.

4.3. SURFACE WATER REPORTING

ALDOT will retain calibration and maintenance records, copies of reports, and records of data used for reports, for at least three years from the date of the sample collection, report, or application. All records will be kept at a central repository and available for public inspection.

In accordance with the NPDES permit for the Southwest Area, results of surface water monitoring every two weeks at SWA DSN001 will be presented in Discharge Monitoring Reports submitted to ADEM on or before the 28th day of January, April, July, and October.

All surface water monitoring reports will be submitted in accordance with ADEM's established rules and regulations, and in accordance with the SW CMIP, Kilby Ditch CMIP, NPDES Permit, and the Long-Term Monitoring Plan.

5. REFERENCES

- ADEM, 2017, Alabama Risk Based Corrective Action Guidance Manual, February 2017.
- ADEM, 2011, Settlement Agreement for Voluntary Response, Public Notice September 30, 2011 through November 14, 2011.
- ADEM Administrative Code R. 335-6-10 Water Division Water Quality Program Volume 1 Division 335-6, Effective May 29, 2007.
- ALDOT, 2001a, Work Plan for Rapid Response, Interim Corrective Measures and Comprehensive Site Assessment, February 2001.
- ALDOT, 2001b, Addendum 3 to the Work Plan for Rapid Response, Interim Corrective Measures and Comprehensive Site Assessment, Investigation of Elevated Concentrations of TCE Near PH12, October 2001.
- ALDOT, 2011, Boundary Well Installation and Continuous Multichannel Tubing Abandonment Plan, June 2011.
- ALDOT, 2007, Coliseum Boulevard Plume Analysis of TCE Trends Over Time, ALDOT, January 2007
- ALDOT, 2008, Coliseum Boulevard Plume Analysis of TCE Trends Over Time, ALDOT, March 2009
- ALDOT, 2009, Coliseum Boulevard Plume Analysis of TCE Trends Over Time, ALDOT, April 2010
- ALDOT, 2010, Coliseum Boulevard Plume Analysis of TCE Trends Over Time, ALDOT, March 2011
- ALDOT, 2007 Corrective Measures Evaluation, Coliseum Boulevard Plume Site, Site-wide Area, October 2007

- ALDOT, Kilby Ditch / Low-lying Area Corrective Measures Implementation Plan, November 2008
- ALDOT, Kilby Ditch / Low-lying Area Corrective Measures Implementation Report, April 2011
- Cameron, K., and P. Hunter, 2002. Optimization of LTM Networks Using GTS: Statistical Approaches to Spatial and Temporal Redundancy. Online document available at http://www.afcee.brooks.af.mil/er/rpo/GTSOptPaper.pdf.
- Davis, J.C. 1986. Statistics and Data Analysis in Geology. John Wiley & Sons, Inc. New York, New York. 2nd ed.
- Environmental Systems Research Institute, Inc. (ESRI), 2006. ArcGIS Software, Redlands, California.
- Goodwin, Mills, & Cawood (GMC), 1999. Phase II Environmental Site Assessment; Vista View Development; Coliseum Boulevard, Montgomery, Alabama: Prepared for Alfa Mutual Fire Insurance Company.
- McDonald, M.G., and A.W. Harbaugh, 1988, A modular threedimensional finite-difference groundwater flow model. Techniques of Water-Resources Investigations 06-A1, United States Geological Survey, 576 p.
- SESI, Investigation of "Low-Lying Areas", October 2006 Sampling Event, Prepared for Alabama Department of Environmental Management; April 2007.
- SESI, Investigation of "Low-Lying Areas", January 2007 Sampling Event, Prepared for Alabama Department of Environmental Management; March 2007.
- SESI, Investigation of "Low-Lying Areas", April 2007 Sampling Event, Prepared for Alabama Department of Environmental Management; June 2007.
- SESI, Investigation of "Low-Lying Areas", July 2007 Sampling Event, Prepared for Alabama Department of Environmental Management; October 2007.

- SESI, Investigation of "Low-Lying Areas", October 2007 Sampling Event, Prepared for Alabama Department of Environmental Management; December 2007.
- SESI, Investigation of "Low-Lying Areas", January 2008 Sampling Event, Prepared for Alabama Department of Environmental Management; May 2008.
- SESI, Investigation of "Low-Lying Areas", April 2008 Sampling Event, Prepared for Alabama Department of Environmental Management; July 2008.
- SESI, Investigation of "Low-Lying Areas", July 2008 Sampling Event, Prepared for Alabama Department of Environmental Management; October 2008.
- SESI, Investigation of "Low-Lying Areas", October 2008 Sampling Event, Prepared for Alabama Department of Environmental Management; December 2008.
- SESI, Investigation of "Low-Lying Areas", January 2009 Sampling Event, Prepared for Alabama Department of Environmental Management; March 2009.
- SESI, Investigation of "Low-Lying Areas", April 2009 Sampling Event, Prepared for Alabama Department of Environmental Management; June 2009.
- SESI, Investigation of "Low-Lying Areas", July 2009 Sampling Event, Prepared for Alabama Department of Environmental Management; October 2009.
- SESI, Investigation of "Low-Lying Areas", October 2009 Sampling Event, Prepared for Alabama Department of Environmental Management; January 2010.
- SESI, Investigation of "Low-Lying Areas", First Quarter 2010 Sampling Event, Prepared for Alabama Department of Environmental Management; April 2010.
- SESI, Investigation of "Low-Lying Areas", Second Quarter 2010 Sampling Event, Prepared for Alabama Department of Environmental Management; June 2010.

- SESI, Investigation of "Low-Lying Areas", Third Quarter 2010 Sampling Event, Prepared for Alabama Department of Environmental Management; October 2010.
- SESI, Status Report, August 2006 through October 2006, Prepared for Alabama Department of Transportation; November 2006.
- SESI, Status Report, November 2006 through January 2007, Prepared for Alabama Department of Transportation; March 2007.
- SESI, Status Report, February 2007 through April 2007, Prepared for Alabama Department of Transportation; June 2007.
- SESI, Status Report, May 2007 through July 2007, Prepared for Alabama Department of Transportation; October 2007.
- SESI, Status Report, August 2007 through October 2007, Prepared for Alabama Department of Transportation; January 2008.
- SESI, Status Report, November 2007 through January 2008, Prepared for Alabama Department of Transportation; April 2008.
- SESI, Status Report, February 2008 through April 2008, Prepared for Alabama Department of Transportation; June 2008.
- SESI, Status Report, May 2008 through July 2008, Prepared for Alabama Department of Transportation; October 2008.
- SESI, Status Report, August 2008 through October 2008, Prepared for Alabama Department of Transportation; January 2009.
- SESI, Status Report, November 2008 through January 2009, Prepared for Alabama Department of Transportation; March 2009.
- SESI, Status Report, February 2009 through April 2009, Prepared for Alabama Department of Transportation; June 2009.
- SESI, Status Report, May 2009 through July 2009, Prepared for Alabama Department of Transportation; October 2009.

- SESI, Status Report, August 2009 through October 2009, Prepared for Alabama Department of Transportation; January 2010.
- SESI, Status Report, First Quarter 2010, Prepared for Alabama Department of Transportation; April 2010.
- SESI, Status Report, Second Quarter 2010, Prepared for Alabama Department of Transportation; June 2010.
- SESI, Status Report, Third Quarter 2010, Prepared for Alabama Department of Transportation; October 2010.
- SESI, Status Report, Fourth Quarter 2010, Prepared for Alabama Department of Transportation; January 2011.
- SESI, Status Report, First Quarter 2011, Prepared for Alabama Department of Transportation; April 2011.
- SESI, Status Report, Second Quarter 2011, Prepared for Alabama Department of Transportation; June 2011.
- TTL, 1999, Groundwater Investigation: Prepared for the Alabama Department of Transportation Central Complex; December 9, 1999.
- TTL, 2000a, Site Investigation, Coliseum Boulevard Area: Prepared for the Alabama Department of Transportation; June 7, 2000.
- TTL, 2000b, Status Report, Coliseum Boulevard Plume Investigation: Prepared for the Alabama Department of Transportation and the Alabama Department of Environmental Management; September 21, 2000.
- TTL, 2000c, Status Report, Coliseum Boulevard Plume Investigation: Prepared for the Alabama Department of Transportation and the Alabama Department of Environmental Management; October 30, 2000.
- TTL, 2001a, Coliseum Boulevard Plume Site, Membrane Interface Probe Investigation: Prepared for the Alabama Department of Transportation; April 16, 2001.

- TTL, 2001b, Conceptual Geology and Hydrogeology Based on Investigations through March 2001: Prepared for the Alabama Department of Transportation: May 9, 2001.
- TTL, 2001c, August Status Report, Coliseum Boulevard Plume Investigation: Prepared for the Alabama Department of Transportation; September 21, 2001.
- TTL, 2001d, April-June 2001 Investigation at Main and West Branches of Kilby Ditch (East Coliseum Boulevard Area): Prepared for the Alabama Department of Transportation; June 26, 2001.
- TTL, 2001e, October Status Report, Coliseum Boulevard Plume Investigation: Prepared for the Alabama Department of Transportation; November 30, 2001.
- TTL, 2001f, November Status Report, Coliseum Boulevard Plume Investigation: Prepared for the Alabama Department of Transportation; December 21, 2001.
- TTL, 2001g, December Status Report, Coliseum Boulevard Plume Investigation: Prepared for the Alabama Department of Transportation; January 31, 2001.
- TTL, 2001h, Coliseum Boulevard Plume Site, Soil Vapor Investigation: Prepared for the Alabama Department of Transportation; April 19, 2001.
- TTL, 2002a, Investigation Report of Probehole 12 Area: Prepared for the Alabama Department of Transportation; May 14, 2002.
- TTL, 2002b, Addendum 10 Supplement, Installation of Deep-zone Monitoring Wells and Status Report for Probehole 12 Area Monitoring Plan: Prepared for the Alabama Department of Transportation; November 15, 2002.
- TTL, 2002c, February 2002 Monthly Status Report: Prepared for the Alabama Department of Transportation; March 28, 2002.

- TTL, 2003a, January and February Monthly Status Reports: Prepared for the Alabama Department of Transportation; April 25, 2003.
- TTL, 2003b, March through June Monthly Status Report: Prepared for the Alabama Department of Transportation; July 28, 2003.
- TTL, 2005a, November 2004 through January 2005 Monthly Status Report: Prepared for the Alabama Department of Transportation; March 30, 2005.
- TTL, 2005b, February 2005 through April 2005 Monthly Status Report: Prepared for the Alabama Department of Transportation; May 26, 2005.
- TTL, 2005c, May 2005 through July 2005 Monthly Status Report: Prepared for the Alabama Department of Transportation; August 23, 2005.
- TTL 2004a, August 2004 through October 2004 Status Report: Prepared for the Alabama Department of Transportation; January 24, 2005.
- TTL 2005d, August 2005 through October 2005 Status Report: Prepared for the Alabama Department of Transportation; January 10, 2006.
- TTL 2005e, Summary Report for Sampling Results for July 21, 2005: Prepared for the Alabama Department of Transportation; September 30, 2005.
- TTL 2005f, Summary Report for Sampling Results for October 27, 2005: Prepared for the Alabama Department of Transportation; January 9, 2006.
- Zheng, C., 1992, MT3D: A modular three-dimensional transport model, version 1.5. S.S. Papadopoulos & Associates, Inc., Bethesda, MD. Code Documentation.

Tables

Long-Term Monitoring Plan

COLISEUM BOULEVARD PLUME SITE MONTGOMERY, ALABAMA

	Ground Surface	Screen Top Interval		Screen Bottom Interval	
Monitoring Well Identifier	Elevation (feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[2])
A-Series Wells	,				
MW-1	215.16	14.0	201.16	63.0	152.16
MW-1A	213.99	32.8	181.19	42.8	171.19
MW-2	218.84	16.0	202.84	70.0	148.84
MW-2A	206.24	34.5	171.74	44.5	161.74
MW-3	211.23	15.0	196.23	51.5	159.73
MW-3A	209.85	30.5	179.35	40.5	169.35
MW-4	214.14	13.0	201.14	62.0	152.14
MW-4A	213.27	38.5	174.77	48.5	164.77
MW-5	218.18	14.5	203.68	53.5	164.68
MW-5A	200.26	14.2	186.06	24.2	176.06
MW-6	218.82	15.5	203.32	59.5	159.32
MW-7	218.05	20.0	198.05	64.0	154.05
MW-8	218.72	17.0	201.72	61.0	157.72
MW-9	217.20	17.0	200.20	56.0	161.20
Pumping Test We	ells				
Pump Test Well	206.00	9.0	197.00	28.0	178.00
PW-1	200.00	33.5	188.11	53.0	168.61
PW-2	210.71	19.0	191.71	38.5	172.21
PW-3	200.46	19.0	184.46	26.0	172.21
PW-4	200.40	45.0	166.11	70.0	141.11
Observation Well	I	45.0	100.11	70.0	141.11
OW-1	206.01	9.0	197.01	28.0	178.01
OW-2	203.05	9.5	193.55	28.5	174.55
OW-3	203.53	8.5	195.03	29.5	174.03
OW-4	200.52	8.0	192.52	22.0	178.52
SWTA Performar	т. — Т				
P-1	130.19	9.0	121.19	12.0	118.19
P-2	128.01	9.0	119.01	12.0	116.01
P-3	130.89	9.0	121.89	12.0	118.89
P-4	123.64	8.0	115.7	11.0	112.7
PZ-26	162.93	49.0	113.93	64.0	98.93
100/200/300/400					
MW-101	202.67	8.0	194.67	12.0	190.67
MW-201	203.00	23.0	180.00	27.0	176.00
MW-102	200.72	9.5	191.22	13.5	187.22
MW-202	200.81	19.0	181.81	23.0	177.81
MW-103	207.10	12.0	195.10	16.0	191.10
MW-203	206.96	29.0	177.96	33.0	173.96
MW-104	217.80	21.5	196.30	30.5	187.30
MW-204	218.00	57.0	161.00	63.5	154.50
MW-304	218.00	72.0	146.00	86.0	132.00
MW-105	217.00	20.5	196.50	26.5	190.50

Table 2-1. Assessment Monitoring Wells and Piezometers [1], [2]

	Ground Surface	Screen 1	Screen Top Interval		Screen Bottom Interval	
Monitoring Well Identifier	Elevation (feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[2])	
MW-205	217.00	46.5	170.50	55.5	161.50	
MW-106	223.00	24.5	198.50	33.5	189.50	
MW-206	223.00	45.0	178.00	54.0	169.00	
MW-107	223.00	25.5	197.50	34.5	188.50	
MW-207	223.00	58.0	165.00	67.0	156.00	
MW-108	213.00	15.5	197.50	24.5	188.50	
MW-208	213.00	47.0	166.00	51.0	162.00	
MW-109	221.00	23.5	197.50	32.5	188.50	
MW-209	221.00	60.5	160.50	69.5	151.50	
MW-210	189.00	4.5	184.50	8.5	180.50	
MW-111	211.84	36.5	175.34	45.5	166.34	
MW-211	212.14	71.5	140.64	80.5	131.64	
MW-311	211.04	88.5	122.54	93.0	118.04	
MW-112	221.00	25.5	195.50	34.5	186.50	
MW-212	221.00	61.5	159.50	70.5	150.50	
MW-113	207.00	11.0	196.00	20.0	187.00	
MW-213	208.00	31.5	176.50	35.5	172.50	
MW-214	172.00	3.0	169.00	7.0	165.00	
MW-214A	172.00	9.5	162.50	18.5	153.50	
MW-115	212.00	15.5	196.50	24.5	187.50	
MW-215	212.00	30.0	182.00	39.0	173.00	
MW-116	194.00	9.5	184.50	18.5	175.50	
MW-216	194.00	31.0	163.00	40.0	154.00	
MW-117	219.00	34.5	184.50	43.5	175.50	
MW-217	209.00	65.0	144.00	74.0	135.00	
MW-118	203.00	9.5	193.50	18.5	184.50	
MW-218	204.00	35.0	169.00	39.0	165.00	
MW-219	203.00	10.0	193.00	19.0	184.00	
MW-220	219.00	22.0	197.00	31.0	188.00	
MW-221	184.00	15.0	169.00	26.0	158.00	
MW-221C	184.15	65.0	119.15	75.0	109.15	
MW-122	215.00	17.5	197.50	26.5	188.50	
MW-222	215.00	48.0	167.00	57.0	158.00	
MW-123	217.00	16.5	200.50	25.5	191.50	
MW-223	217.00	60.5	156.50	69.5	147.50	
MW-124	219.00	24.5	194.50	38.5	180.50	
MW-224	220.00	44.5	175.50	53.5	166.50	
MW-125	207.00	15.5	191.50	24.5	182.50	
MW-225	207.00	31.0	176.00	40.0	167.00	
MW-226	203.60	11.3	192.35	20.5	183.10	

Table 2-1. Assessment Monitoring Wells and Piezometers [1], [2]

	Ground Surface	Screen Top Interval		Screen Bottom Interval	
Monitoring Well Identifier	Elevation (feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[2])
MW-227	206.00	18.0	188.00	27.0	179.00
MW-128	212.00	17.0	195.00	26.0	186.00
MW-228	213.00	41.0	172.00	50.0	163.00
MW-129	215.00	18.0	197.00	27.0	188.00
MW-229	215.00	30.5	184.50	39.5	175.50
MW-130	216.00	18.5	197.50	27.5	188.50
MW-230	216.00	42.0	174.00	51.0	165.00
MW-131	206.00	17.0	189.00	23.5	182.50
MW-231	206.00	28.5	177.50	32.5	173.50
MW-132	216.00	19.5	196.50	28.5	187.50
MW-232	216.00	46.0	170.00	55.0	161.00
MW-133	205.00	9.0	196.00	18.0	187.00
MW-233	205.00	26.0	179.00	30.0	175.00
MW-134	210.00	11.5	198.50	25.5	184.50
MW-234	210.00	35.0	175.00	39.0	171.00
MW-153	239.03	104.0	135.03	113.5	125.53
MW-154	245.13	95.6	149.53	105.1	140.03
MW-155	216.32	89.0	127.32	99.0	117.32
MW-156	184.96	68.0	116.96	77.5	107.46
MW-339	223.39	99.0	124.39	108.5	114.89
MW-340	215.19	81.5	133.69	91.0	124.19
MW-341	212.00	50.0	162.00	54.5	157.50
MW-342	216.00	81.5	134.50	86.0	130.00
MW-357	206.84	54.5	152.34	63.5	143.34
MW-457	207.21	122.9	84.36	147.0	60.21
MW-158	190.74	23.0	167.74	33.0	157.74
MW-258	191.10	43.0	148.10	48.0	143.10
MW-358	191.11	43.0	148.11	48.0	143.11
MW-259	181.94	56.5	125.44	66.5	115.44
MW-260	188.99	65.0	123.99	75.0	113.99
MW-261	195.35	61.0	134.35	71.0	124.35
MW-262	177.47	66.5	110.97	76.5	100.97
MW-263	182.24	58.0	124.24	68.0	114.24
MW-264	182.07	58.5	123.57	68.5	113.57
MW-265	181.44	56.0	125.44	66.0	115.44
100A/200B/200C Wells	Series				
MW-135A	217.95	31.0	186.95	35.5	182.45
MW-235B	217.73	40.0	177.73	44.5	173.23
MW-235C	217.44	50.0	167.44	54.5	162.94
MW-136A	211.37	20.0	191.37	24.5	186.87

Table 2-1. Assessment Monitoring Wells and Piezometers [1], [2]

	Ground Surface			Screen Bot	tom Interval
Monitoring Well Identifier	Elevation (feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[3])	(feet bgs ^[4])	(feet AMSL ^[2])
MW-236B	211.29	27.0	184.29	31.5	179.79
MW-236C	210.98	34.0	176.98	38.5	172.48
MW-137A	213.62	32.0	181.62	36.5	177.12
MW-237B	213.74	41.0	172.74	45.5	168.24
MW-237C	213.62	48.0	165.62	52.5	161.12
MW-138A	223.64	34.0	189.64	38.5	185.14
MW-238B	223.44	44.0	179.44	48.0	175.44
MW-238C	223.55	50.0	173.55	54.5	169.05
MW-143A	201.93	8.0	193.93	13.0	188.93
MW-243B	201.93	18.0	183.93	23.0	178.93
MW-144A	214.51	21.0	193.51	31.0	183.51
MW-244B	214.51	37.0	177.51	47.0	167.51
MW-244C	214.51	52.0	162.51	62.0	152.51
MW-145A	282.74	96.0	186.74	106.0	176.74
MW-146A	200.46	10.0	190.46	15.0	185.46
MW-246B	200.46	19.0	181.46	24.0	176.46
MW-147A	201.10	10.0	191.10	15.0	186.10
MW-247B	201.10	20.0	181.10	25.0	176.10
MW-148A	210.70	36.5	174.20	82.0	128.70
MW-248B	211.28	37.5	173.78	47.0	164.28
MW-248C	211.52	61.5	150.02	71.0	140.52
MW-149A	210.58	13.0	197.58	23.0	187.58
MW-249B	210.58	32.0	178.58	37.0	173.58
MW-249C	210.58	41.0	169.58	46.0	164.58
MW-150A	207.99	8.0	199.99	18.0	189.99
MW-250B	207.99	22.0	185.99	27.0	180.99
MW-250C	207.99	31.0	176.99	36.0	171.99
MW-151A	202.04	7.0	195.04	17.0	185.04
MW-251B	202.04	23.0	179.04	28.0	174.04
MW-152A	204.99	8.0	196.99	18.0	186.99
MW-252B	204.99	23.0	181.99	33.0	171.99

Table 2-1. Assessment Monitoring Wells and Piezometers [1], [2]

NOTES: ^[1] Shaded cell indicates the well is an EFF well. The well is used for collection of water quality and groundwater elevation measurements (see Table 2.2 for a list of EFF wells).

^[2] Non-shaded cell indicates that only groundwater elevations will be collected from the well.

^[3] Above mean sea level.

^[4] Below ground surface.

*7 CMT Wells not included

Piezometer	Ground Surface	Screen Top Interval		Screen B	ottom Interval
Location	Elevation (feet AMSL ^[2])	(feet bgs ^[3])	(feet AMSL ^[2])	(feet bgs ^[3])	(feet AMSL ^[2])
PZ-1	221.26	21.5	199.76	30.5	190.76
PZ-2	207.3	15.5	191.8	24.5	182.8
PZ-3	220.67	24	196.67	34	186.67
PZ-4	216.66	26.5	190.16	35.5	181.16
PZ-5	204.82	15	189.82	19.8	185.02
PZ-6	212.55	23	189.55	27.8	184.75
PZ-7	206.22	17	189.22	21.8	184.42
PZ-8	209.58	17	192.58	21.8	187.78
PZ-9	205.28	17	188.28	21.8	183.48
PZ-10	214.37	23	191.37	27.8	186.57
PZ-11	212.0	27	185.0	31.8	180.2
PZ-12	212.56	20	192.56	25	187.56
PZ-13	208.3	20	188.3	25	183.3
PZ-14	204.83	15	189.83	20	184.83
PZ-15	220.62	44	176.62	49	171.62
PZ-16	193.47	8	185.47	13	180.47
PZ-17	203.95	19	184.95	24	179.95
PZ-18	193.22	61	132.22	70	123.22
PZ-19	186.49	53	133.49	63	123.49
PZ-20	184.8	57	127.8	67	117.8
PZ-21	167.87	59	108.87	69	98.87
PZ-22	182.89	2	180.89	12	170.89
PZ-23	173.8	14	159.8	23.5	150.3
PZ-24	208.57	14	194.57	23.5	185.07
PZ-25	182.88	4	178.88	8.5	174.38
PD-1	206.33	10	196.33	19.8	186.53
PD-2	201.86	13	188.86	17.8	184.06
PD-3	202.62	15	187.62	19.8	182.82
PD-4	202.22	10	192.22	20	182.22
PD-101	200.83	12.5	188.33	16.5	184.33
PD-102	205.55	16.5	189.05	20.5	185.05
PD-103	208.55	18.5	190.05	22.5	186.05
PD-104	200.33	11	189.33	14	186.33
PD-105	199.39	12	187.39	15	184.39
PD-106	199.73	14.5	185.23	17.5	182.23
PD-107	205.87	17.5	188.37	20.5	185.37
PD-108	205.82	14.5	191.32	17.5	188.32
PD-109	204.59	7	197.59	12	192.59
FBPZ-1	215.4	19	196.4	28.5	186.9
FBPZ-2	215.93	17	198.93	26.5	189.43

Table 2-1. Assessment Monitoring Wells and Piezometers [1]

NOTES: ^[1] Piezometers will be used for groundwater elevation measurements only. ^[2] Below ground surface. ^[3] Above mean sea level.

Table 2-2. Effectiveness, Boundary and Background Monitoring Wells

WELL NUMBER	WELL TYPE	MONITORED ZONE
MW-104	EFF / VIS	Shallow
MW-106	EFF / VIS	Shallow
MW-108	EFF / VIS	Shallow
MW-109	EFF / VIS	Shallow
MW-111	EFF / VIS	Shallow
MW-113	EFF / VIS	Shallow
MW-115	EFF / VIS	Shallow
MW-116	EFF / VIS	Shallow
MW-117	EFF / VIS	Shallow
MW-118	EFF / VIS	Shallow
MW-123	EFF / VIS	Shallow
MW-125	EFF / VIS	Shallow
MW-128	EFF / VIS	Shallow
MW-129	EFF / VIS	Shallow
MW-130	EFF / VIS	Shallow
MW-131	EFF	Shallow
MW-132	EFF / VIS	Shallow
MW-133	EFF / VIS	Shallow
MW-134	EFF / VIS	Shallow
MW-136A	EFF	Shallow
MW-137A	EFF	Shallow
MW-143A	EFF / VIS	Shallow
MW-143A MW-144A	EFF / VIS	Shallow
MW-144A MW-150A	EFF / VIS	Shallow
MW-150A	EFF	Shallow
MW-155	EFF	Shallow
MW-154	EFF	Shallow
MW-155	EFF	Shallow
MW-130	EFF	Shallow
MW-204	EFF	Shallow
MW-208	EFF	Shallow
MW-209	EFF	Shallow
MW-209	EFF	Shallow
MW-210	EFF	Shallow
MW-213	EFF	Shallow
MW-215	EFF	Shallow
MW-216	EFF	Shallow
MW-217	EFF	Shallow
MW-218	EFF	Shallow
MW-219	EFF	Shallow
MW-221	EFF	Shallow
MW-221C	EFF	Shallow
MW-223	EFF	Shallow
MW-225	EFF	Shallow
MW-228	EFF	Shallow
MW-229	EFF	Shallow
MW-230	EFF	Shallow
MW-231	EFF	Shallow
MW-232	EFF	Shallow
MW-233	EFF	Shallow
MW-234	EFF	Shallow
MW-235B	EFF	Shallow
	A 11	

NUMBER TYPE MW-135A EFF MW-235C EFF MW-236B EFF MW-236C EFF MW-237B EFF MW-237C EFF MW-243B EFF MW-244B EFF MW-246B EFF MW-246B EFF MW-260B EFF MW-250C EFF MW-261 EFF MW-263 EFF MW-264 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-3339 EFF MW-341 EFF MW-357	ONITORED ZONE
MW-23SC EFF MW-236B EFF MW-236C EFF MW-237B EFF MW-237C EFF MW-243B EFF MW-244B EFF MW-246B EFF MW-246B EFF MW-250B EFF MW-250C EFF MW-250B EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-304 EFF MW-339 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-4 <td< th=""><th>Shallow</th></td<>	Shallow
MW-236B EFF MW-236C EFF MW-237B EFF MW-237C EFF MW-243B EFF MW-243B EFF MW-244B EFF MW-244B EFF MW-244B EFF MW-244B EFF MW-246B EFF MW-246B EFF MW-246B EFF MW-247B EFF MW-250B EFF MW-250C EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-339 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-357 EFF MW-457 EFF BDY-1 BDY BDY-5 B	Shallow
MW-236C EFF MW-237B EFF MW-237C EFF MW-243B EFF MW-244B EFF MW-244C EFF MW-244C EFF MW-244C EFF MW-244C EFF MW-244B EFF MW-246B EFF MW-246B EFF MW-247B EFF MW-250B EFF MW-250C EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-339 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-357 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY<	Shallow
MW-237B EFF MW-237C EFF MW-243B EFF MW-244B EFF MW-244C EFF MW-244C EFF MW-244B EFF MW-244C EFF MW-244C EFF MW-244C EFF MW-244B EFF MW-246B EFF MW-247B EFF MW-250B EFF MW-250C EFF MW-260 EFF MW-261 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-304 EFF MW-304 EFF MW-339 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-357 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY	Shallow
MW-237C EFF MW-243B EFF MW-244B EFF MW-244C EFF MW-244C EFF MW-244C EFF MW-246B EFF MW-246B EFF MW-246B EFF MW-247B EFF MW-250B EFF MW-250C EFF MW-250C EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-357 BFF BDY-1 BDY BDY-2 BDY BDY BDY <td>Shallow</td>	Shallow
MW-243B EFF MW-244B EFF MW-244C EFF MW-244C EFF MW-146A EFF / VIS MW-246B EFF MW-247B EFF MW-250B EFF MW-250C EFF MW-250B EFF MW-250C EFF MW-250 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-341 EFF MW-357 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY </td <td>Shallow</td>	Shallow
MW-244B EFF MW-244C EFF MW-146A EFF / VIS MW-246B EFF MW-147A EFF / VIS MW-247B EFF MW-250B EFF MW-250C EFF MW-259 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BD	Shallow
MW-244C EFF MW-146A EFF / VIS MW-246B EFF MW-147A EFF / VIS MW-247B EFF MW-250B EFF MW-250C EFF MW-250 EFF MW-250 EFF MW-260 EFF MW-261 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-363 EFF MW-364 EFF MW-365 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 B	Shallow
MW-146A EFF / VIS MW-246B EFF MW-147A EFF / VIS MW-247B EFF MW-250B EFF MW-250C EFF MW-250 EFF MW-250 EFF MW-250 EFF MW-260 EFF MW-261 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-304 EFF MW-311 EFF MW-342 EFF MW-343 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY BD	Shallow
MW-246B EFF MW-147A EFF / VIS MW-247B EFF MW-250B EFF MW-250C EFF MW-259 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-265 EFF MW-265 EFF MW-304 EFF MW-311 EFF MW-340 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY BDY BDY-3 BDY BDY BDY BDY-6 BDY BDY-7 BDY </td <td>Shallow</td>	Shallow
MW-147A EFF / VIS MW-247B EFF MW-250B EFF MW-250C EFF MW-259 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY <	
MW-247B EFF MW-250B EFF MW-250C EFF MW-259 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-311 EFF MW-342 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY BDY BDY BDY BDY-3 BDY BDY BDY BDY BDY BDY BDY	Shallow Shallow
MW-250B EFF MW-250C EFF MW-259 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-265 EFF MW-360 EFF MW-304 EFF MW-304 EFF MW-339 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY	
MW-250C EFF MW-259 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-265 EFF MW-364 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY <tr< td=""><td>Shallow</td></tr<>	Shallow
MW-259 EFF MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY BDY BDY-5 BDY BDY BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY	Shallow
MW-260 EFF MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-339 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-261 EFF MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY <td>Shallow</td>	Shallow
MW-262 EFF MW-263 EFF MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-304 EFF MW-339 EFF MW-340 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-263 EFF MW-264 EFF MW-265 EFF MW-5A EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-264 EFF MW-265 EFF MW-304 EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-265 EFF MW-5A EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-5A EFF MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-342 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-304 EFF MW-311 EFF MW-339 EFF MW-340 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-311 EFF MW-339 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
MW-339 EFF MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-357 EFF MW-358 EFF MW-357 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Deep
MW-340 EFF MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Deep
MW-341 EFF MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Deep
MW-342 EFF MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Deep
MW-357 EFF MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY <td>Deep</td>	Deep
MW-358 EFF MW-457 EFF BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Deep
MW-457EFFBDY-1BDYBDY-2BDYBDY-3BDYBDY-4BDYBDY-5BDYBDY-6BDYBDY-7BDYBDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Deep
BDY-1 BDY BDY-2 BDY BDY-3 BDY BDY-4 BDY BDY-5 BDY BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-12 BDY BDY-13 BDY	Deep
BDY-2BDYBDY-3BDYBDY-4BDYBDY-5BDYBDY-6BDYBDY-7BDYBDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Deep
BDY-3BDYBDY-4BDYBDY-5BDYBDY-6BDYBDY-7BDYBDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Shallow
BDY-4BDYBDY-5BDYBDY-6BDYBDY-7BDYBDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Shallow
BDY-5BDYBDY-6BDYBDY-7BDYBDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Shallow
BDY-6 BDY BDY-7 BDY BDY-8 BDY BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
BDY-7BDYBDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Shallow
BDY-7BDYBDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Shallow
BDY-8BDYBDY-9BDYBDY-10BDYBDY-11BDYBDY-12BDYBDY-13BDY	Shallow
BDY-9 BDY BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
BDY-10 BDY BDY-11 BDY BDY-12 BDY BDY-13 BDY	Shallow
BDY-11BDYBDY-12BDYBDY-13BDY	Shallow
BDY-12 BDY BDY-13 BDY	Shallow
BDY-13 BDY	Shallow
-	Shallow
BDY-14 BDY	Shallow
MW-112 BKG / VIS	Shallow
MW-212 BKG	Shallow

EFF – Corrective Action Effectiveness Monitoring Well

BDY – Boundary Monitoring Well BKG – Background Well

VIS - Vapor Intrusion Screening Groundwater Monitoring Well

Table 2-3A. Semi-Annual (January & July) Boundary Monitoring Wells

WELL NUMBER	WELL TYPE	MONITORED ZONE
BDY-01R	BDY	Shallow
BDY-02	BDY	Shallow
BDY-03	BDY	Shallow
BDY-04	BDY	Shallow
BDY-05	BDY	Shallow
BDY-06	BDY	Shallow
BDY-07	BDY	Shallow
BDY-08	BDY	Shallow
BDY-09	BDY	Shallow
BDY-10	BDY	Shallow
BDY-11R	BDY	Shallow
BDY-12	BDY	Shallow
BDY-13	BDY	Shallow
BDY-14	BDY	Shallow

Table 2-3B. Annual (January-only) Sampling Program Effectiveness and Background Monitoring Wells

WELL NUMBER	WELL TYPE	MONITORED ZONE
MW-104	EFF / VIS	Shallow
MW-106	EFF / VIS	Shallow
MW-108	EFF / VIS	Shallow
MW-109	EFF / VIS	Shallow
MW-111	EFF / VIS	Shallow
MW-113	EFF / VIS	Shallow
MW-115	EFF / VIS	Shallow
MW-116	EFF / VIS	Shallow
MW-117	EFF / VIS	Shallow
MW-118	EFF / VIS	Shallow
MW-123	EFF / VIS	Shallow
MW-125	EFF / VIS	Shallow
MW-128	EFF / VIS	Shallow
MW-129	EFF / VIS	Shallow
MW-130	EFF / VIS	Shallow
MW-131	EFF	Shallow
MW-132	EFF / VIS	Shallow
MW-133	EFF / VIS	Shallow
MW-134	EFF / VIS	Shallow
MW-136A	EFF	Shallow
MW-137A	EFF	Shallow
MW-143A	EFF / VIS	Shallow
MW-144A	EFF / VIS	Shallow
MW-150A	EFF / VIS	Shallow
MW-153	EFF	Shallow
MW-154	EFF	Shallow
MW-155	EFF	Shallow
MW-156	EFF	Shallow
MW-204	EFF	Shallow
MW-206	EFF	Shallow
MW-208	EFF	Shallow
MW-209	EFF	Shallow
MW-210	EFF	Shallow
MW-210	EFF	Shallow
MW-213	EFF	Shallow
MW-215	EFF	Shallow
	EFF	Shallow
MW-216 MW-217	EFF	Shallow
MW-217	EFF	Shallow
-		
MW-219	EFF	Shallow
MW-221	EFF	Shallow
MW-221C	EFF	Shallow
MW-223	EFF	Shallow
MW-225	EFF	Shallow
MW-228	EFF	Shallow
MW-229	EFF	Shallow
MW-230	EFF	Shallow
MW-231	EFF	Shallow
MW-232	EFF	Shallow
MW-233	EFF	Shallow
MW-234	EFF	Shallow
MW-235B	EFF	Shallow

WELL NUMBER	WELL TYPE	MONITORED ZONE
MW-135A	EFF	Shallow
MW-235C	EFF	Shallow
MW-236B	EFF	Shallow
MW-236C	EFF	Shallow
MW-237B	EFF	Shallow
MW-237C	EFF	Shallow
MW-243B	EFF	Shallow
MW-244B	EFF	Shallow
MW-244C	EFF	Shallow
MW-146A	EFF / VIS	Shallow
MW-246B	EFF	Shallow
MW-147A	EFF / VIS	Shallow
MW-247B	EFF	Shallow
MW-250B	EFF	Shallow
MW-250C	EFF	Shallow
MW-259	EFF	Shallow
MW-260	EFF	Shallow
MW-261	EFF	Shallow
MW-262	EFF	Shallow
MW-263	EFF	Shallow
MW-264	EFF	Shallow
MW-265	EFF	Shallow
MW-5A	EFF	Shallow
MW-304	EFF	Deep
MW-311	EFF	Deep
MW-339	EFF	Deep
MW-340	EFF	Deep
MW-341	EFF	Deep
MW-342	EFF	Deep
MW-357*	EFF*	Deep
MW-358	EFF	Deep
MW-457	EFF	Deep
MW-112	BKG / VIS	Shallow
MW-212	BKG	Shallow

- MW-357 to be sampled quarterly until the TCE concentration is less than the effectiveness concentration.

- Wells with RBTLs will be sampled semi-annually with the First Quarter and Third Quarter wells

Table 3-1. Effectiveness Well Concentration Action Limits

	TCE
WELL NUMBER	CONCENTRATION
	LIMIT (mg/L)
MW-106	20
MW-206	20
MW-137A	20
MW-237B	20
MW-237C	20
MW-131	15
MW - 123	15
MW - 223	15
MW- 231	15
MW-135A	15
MW-235B	15
MW-235C	15
MW-136A	15
MW-236B	15
MW-236C	15
MW-150A	15
MW-250B	15
MW-250C	15
MW-108	5
MW-208	5
MW-129	5
MW-229	5
MW-130	5
MW-230	5
MW-132	5
MW-232	5
MW-143A	5
MW-243B	5
MW-245B	5
MW-140A MW-246B	5
MW-147A	5
MW-247B	5
MW-128	1
MW-228	1
MW-134	1
MW-234	1
MW-153	1
MW-5A	0.5
MW-113	0.5
MW-213	0.5
MW-111	0.5
MW-211	0.5
MW-117	0.5
MW-217	0.5
MW-133	0.5
MW-233	0.5

WELL NUMBER	TCE CONCENTRATION LIMIT (mg/L)		
MW-210	0.5		
MW-221	0.5		
MW-221C	0.5		
MW-156	0.5		
MW-259	0.5		
MW-260	0.5		
MW-263	0.5		
MW-264	0.5		
MW-265	0.5		
MW-154	0.5		
MW-155	0.5		
MW-125	0.5		
MW-225	0.5		
MW-144A	0.5		
MW-244B	0.5		
MW-244C	0.5		
MW-261	0.5		
MW-109	0.1		
MW-209	0.1		
MW-115	0.1		
MW-215	0.1		
MW-116	0.1		
MW-216	0.1		
MW-118	0.1		
MW-218	0.1		
MW-219	0.1		
MW-262	0.1		
MW-311	0.005		
MW-339	0.005		
MW-340	0.005		
MW-341	0.005		
MW-342	0.005		
MW-104	0.005		
MW-204	0.005		
MW-304	0.005		
MW-112	0.005		
MW-212	0.005		
MW-357	0.005		
MW-457	0.005		
MW-358	0.005		

BOUNDARY WELL COCs	ACTION LIMITS (MG/L)	
Chloroform	0.08**	
1,1-Dichloroethene	0.007*	
cis-1,2-Dichlroroethene	0.07*	
Trichloroethene	0.005*	
Vinyl Chloride	0.002*	
1,1-Dichloroethane	0.0028**	
Carbon Tetrachloride	0.005*	
Chloroethane	2.1**	
Tetrachloroethylene	0.005*	
Methylene Chloride	0.011**	

Table 3-2. Boundary Well Concentration Action Limits

* From ADEM Alabama Drinking Water Standard Maximum Contaminant Level (MCL) ADEM Code r. 335-7 ** From Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=0.1) April 2019. Note the RSLs/MCLs in effect at the time of sample collection will be used to compare to the analytical results.

Table 3-3 Surface Water Sample Locations

Low-Lying Area Compliance Point

POINT IDENTIFICATION	POINT DESCRIPTION	MONITORING SCHEDULE	NORTHING AND EASTING ²	MONTHLY AVERAGE TCE CONCENTRATION ALLOWABLE (PPB) ¹
LLCP-1	Lower Kilby Ditch at the confluence with Three Mile Branch	Every Two Weeks	N 700218.85 E 525429.50	37.38

¹PPB = parts per billion (micrograms per liter) ²State Plane, Alabama East, NAD 1983 (Feet)

Southwest Area Compliance Point

POINT IDENTIFICATION	POIN	T DESCRIPTION	MONITORING SCHEDULE	NORTHING AND EASTING ²	MONTHLY AVERAGE TCE CONCENTRATION ALLOWABLE (PPB) ¹
DSN001	Sc	outhwest Area	Every Two Weeks	N 691836.91 E 513660.36	37.94/17.47

¹PPB = parts per billion (micrograms per liter) ²State Plane, Alabama East, NAD 1983 (Feet)

Low-Lying Area Effectiveness Monitoring Points

POINT IDENTIFICATION	POINT DESCRIPTION	MONITORING SCHEDULE	NORTHING AND EASTING ¹
LLA-1	Low-Lying Area- upstream of constructed wetland	Quarterly	N 699878.64 E 523381.01
LLA-2	Low-Lying Area- discharge from constructed wetland	Quarterly	N 699990.71 E 523684.38
LLA-3	Low-Lying Area- internal constructed wetland	Quarterly	N 699996.83 E 523854.62
LLA-4	Low-Lying Area- small tributary south of existing wetland	Quarterly	N 699800.83 E 524107.32
LLA-5	Low-Lying Area- groundwater interceptor trench pond	Quarterly	N 700254.35 E 523639.42
LLA-6	Low-Lying Area- groundwater interceptor trench before confluence with lower Kilby Ditch	Quarterly	N 700096.52 E 524805.57
LLA-7	Low-Lying Area- lower Kilby Ditch after confluence with groundwater interceptor trench	Quarterly	N 700196.52 E 525265.81
LLA-8	Low-Lying Area- existing wetland	Quarterly	N 699976.44 E 524421.23
LLA-9	Unnamed tributary immediately south of Northern Boulevard	Quarterly	N 699482.79 E 524098.67
LLA-10	Surface water south of Northern Boulevard groundwater seeps from west of unnamed tributary	Quarterly	N 699435.54 E 523917.64
LLA-11	Discharge from Russell Distribution facility storm water/groundwater	Quarterly	N 699358.30 E 524077.62

¹State Plane, Alabama East, NAD 1983 (Feet)

Table 3-3 Surface Water Sample Locations

Southwest Area Effectiveness Monitoring Points

POINT IDENTIFICATION	POINT DESCRIPTION	MONITORING SCHEDULE	NORTHING AND EASTING ¹
SWA-1	Dewatering Pond	Quarterly	N 693491.68 E 512941.54
SWA-2	Transfer Pond	Quarterly	N 692895.39 E 512861.25
SWA-3	Inlet structure at Discharge Pond from Transfer Pond	Quarterly	N 692992.61 E 513529.03
SWA-4	Outlet structure at Discharge Pond	Quarterly	N 692628.30 E 513642.34

¹State Plane, Alabama East, NAD 1983 (Feet)

Southwest Area Voluntary Monitoring Points

POINT IDENTIFICATION	POINT DESCRIPTION	MONITORING SCHEDULE	NORTHING AND EASTING ¹
FG	Flood Gate	Periodic	N 690614.84 E 513480.17
O1	Lower Wetumpka Road Ditch Discharge to Wetland	Periodic	N 690784.23 E 514493.47

¹State Plane, Alabama East, NAD 1983 (Feet)

Other Effectiveness Monitoring Points

POINT IDENTIFICATION	POINT DESCRIPTION	MONITORING SCHEDULE	NORTHING AND EASTING ¹
ВВ	Stream and Wetland East of Bama Budweiser Facility	Quarterly	N 698785.41 E 525518.23
ZP	Zoo Pond	Quarterly	N 699530.88 E 519019.93
ZD	Zoo Ditch	Quarterly	N 699527.48 E 519807.66

¹State Plane, Alabama East, NAD 1983 (Feet)

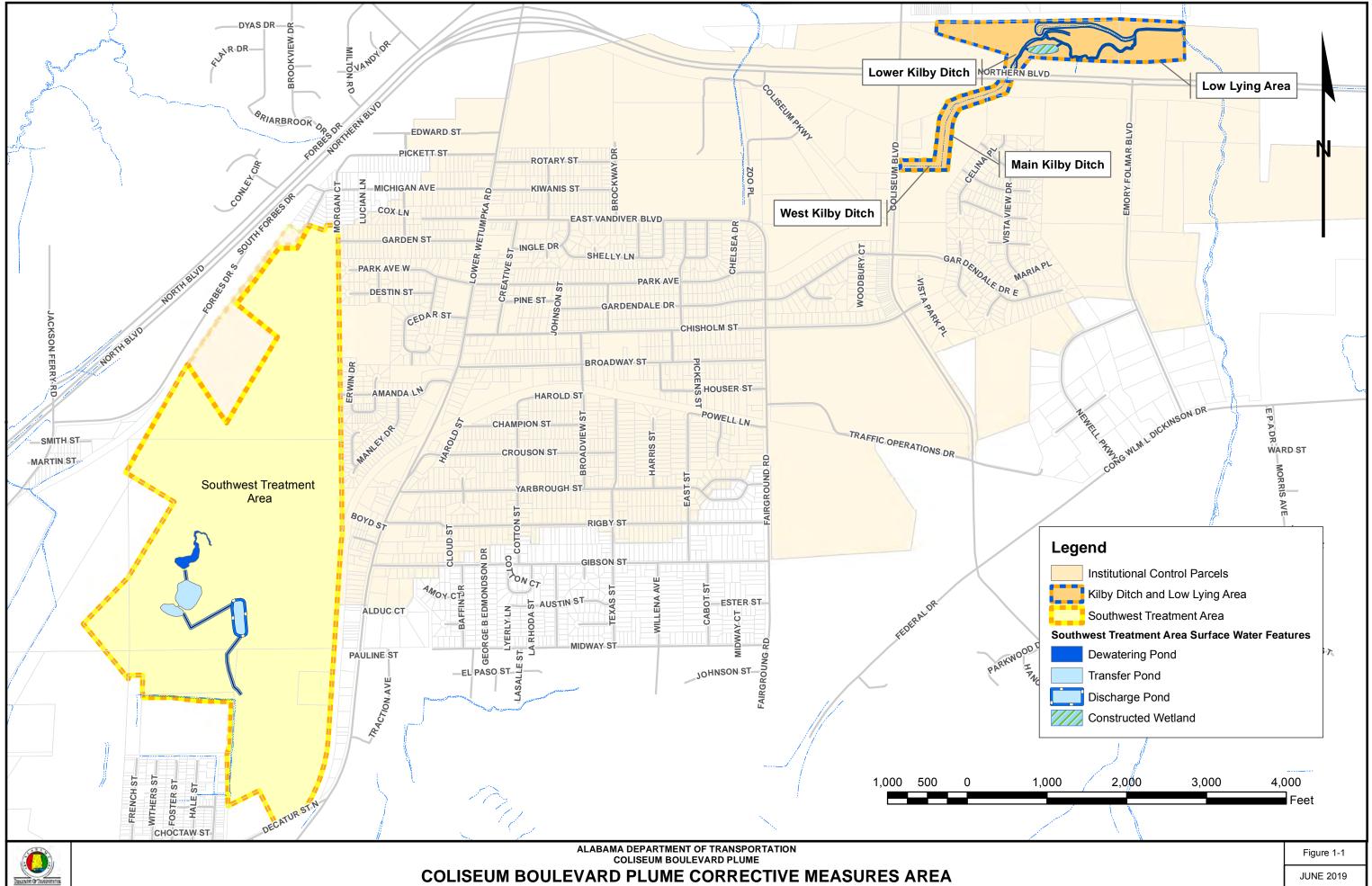
Three Mile Branch Monitoring Points

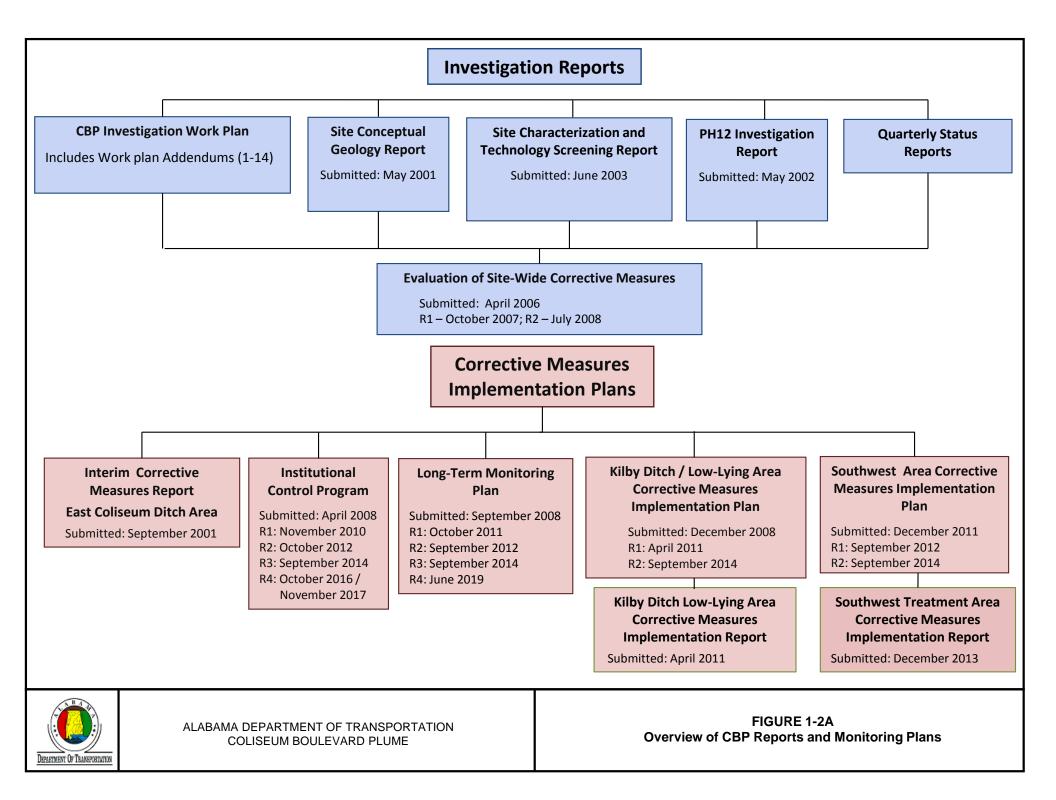
POINT IDENTIFICATION	POINT DESCRIPTION	MONITORING SCHEDULE	NORTHING AND EASTING ¹
TMB-1	Upstream Point	Quarterly	N 698070.74 E 525787.38
TMB-2	Upstream at North Boulevard	Quarterly	N 699431.09 E 525939.61
TMB-3	Downstream Point	Quarterly	N 700374.82 E 525444.65

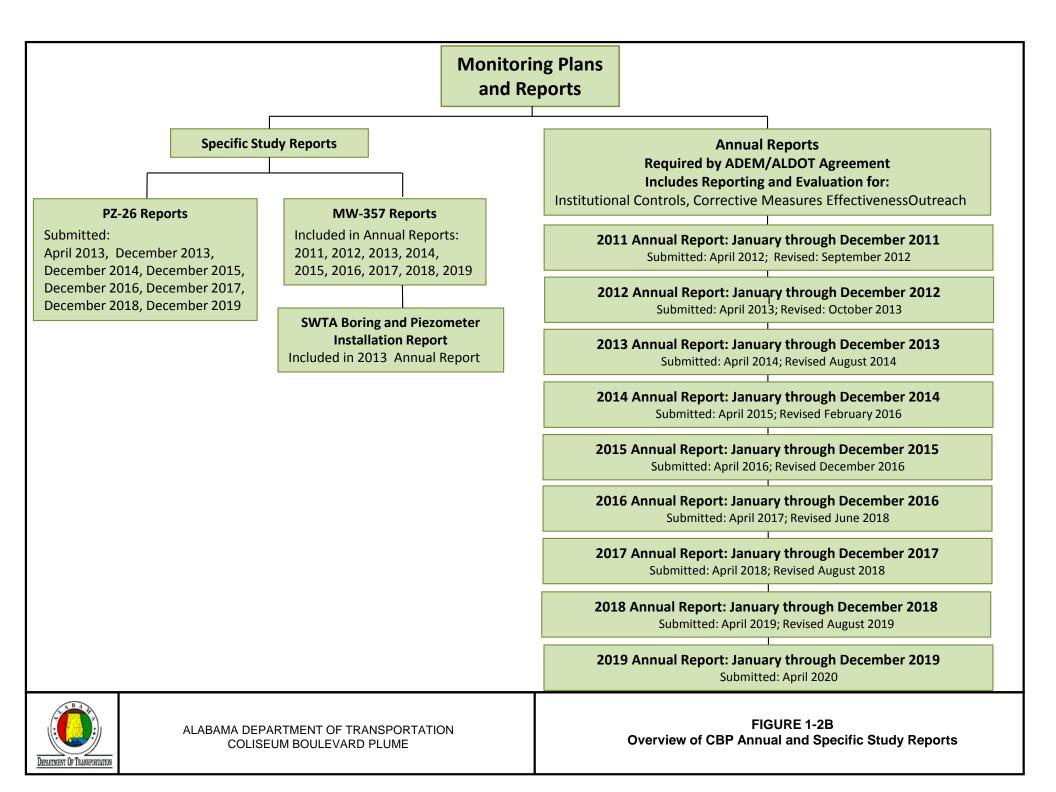
¹State Plane, Alabama East, NAD 1983 (Feet)

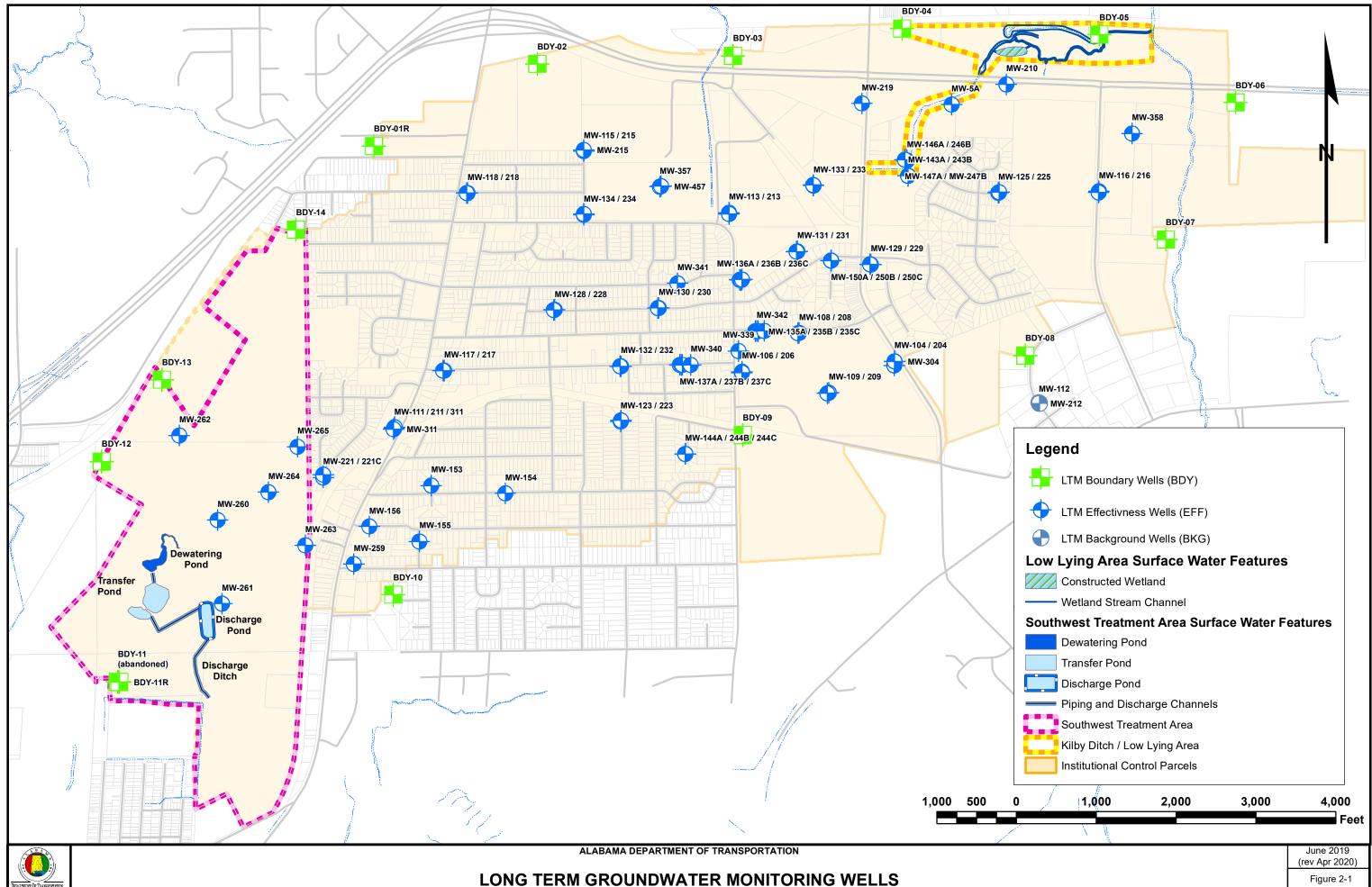
Table 3-4 Vapor Intrusion Screening Groundwater Monitoring Wells

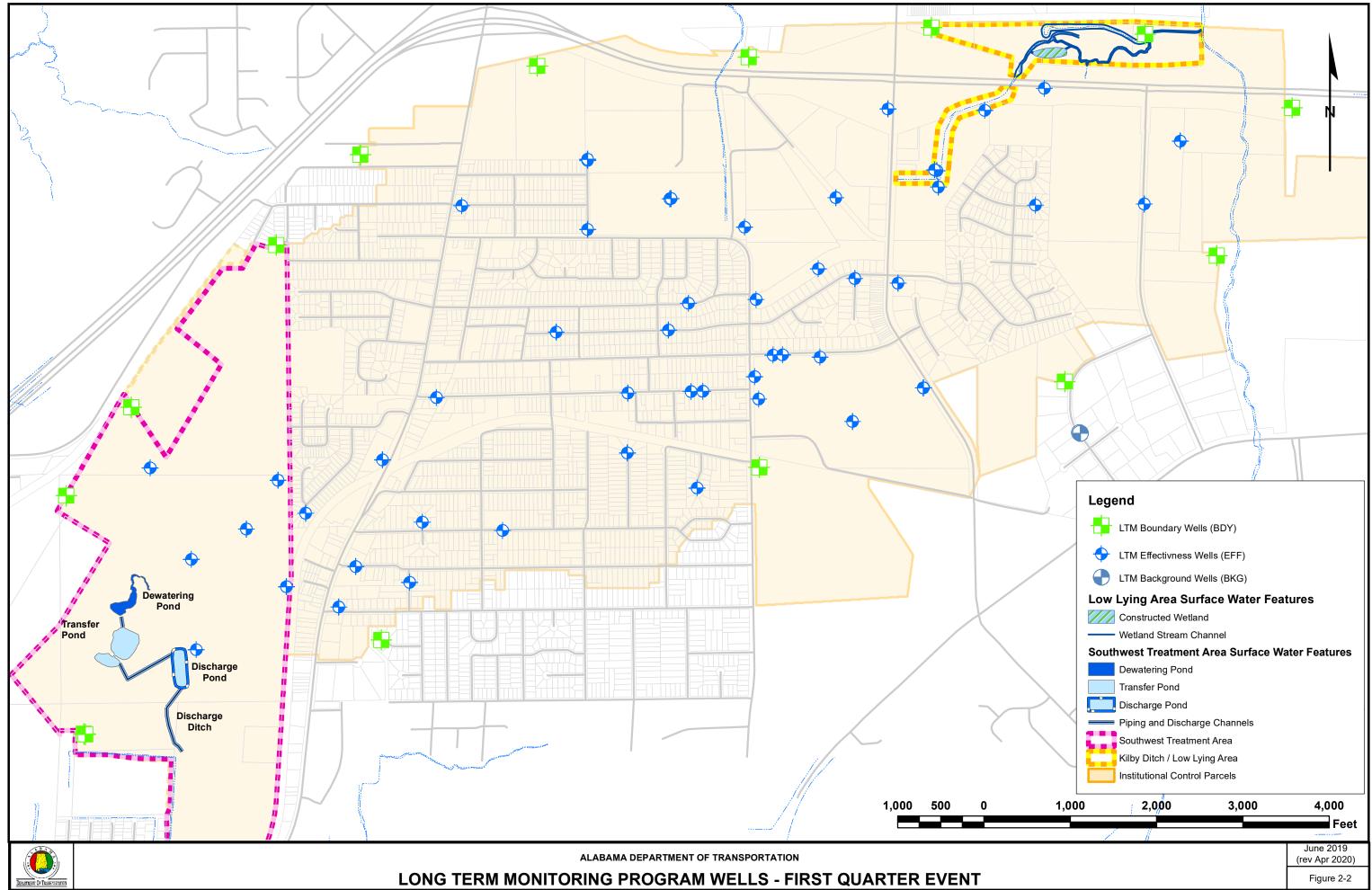
VIS Well Location
MW-104
MW-106
MW-108
MW-109
MW-111
MW-112
MW-113
MW-115
MW-116
MW-117
MW-118
MW-123
MW-125
MW-128
MW-129
MW-130
MW-132
MW-133
MW-134
MW-143A
MW-144A
MW-146A
MW-147A
MW-150A

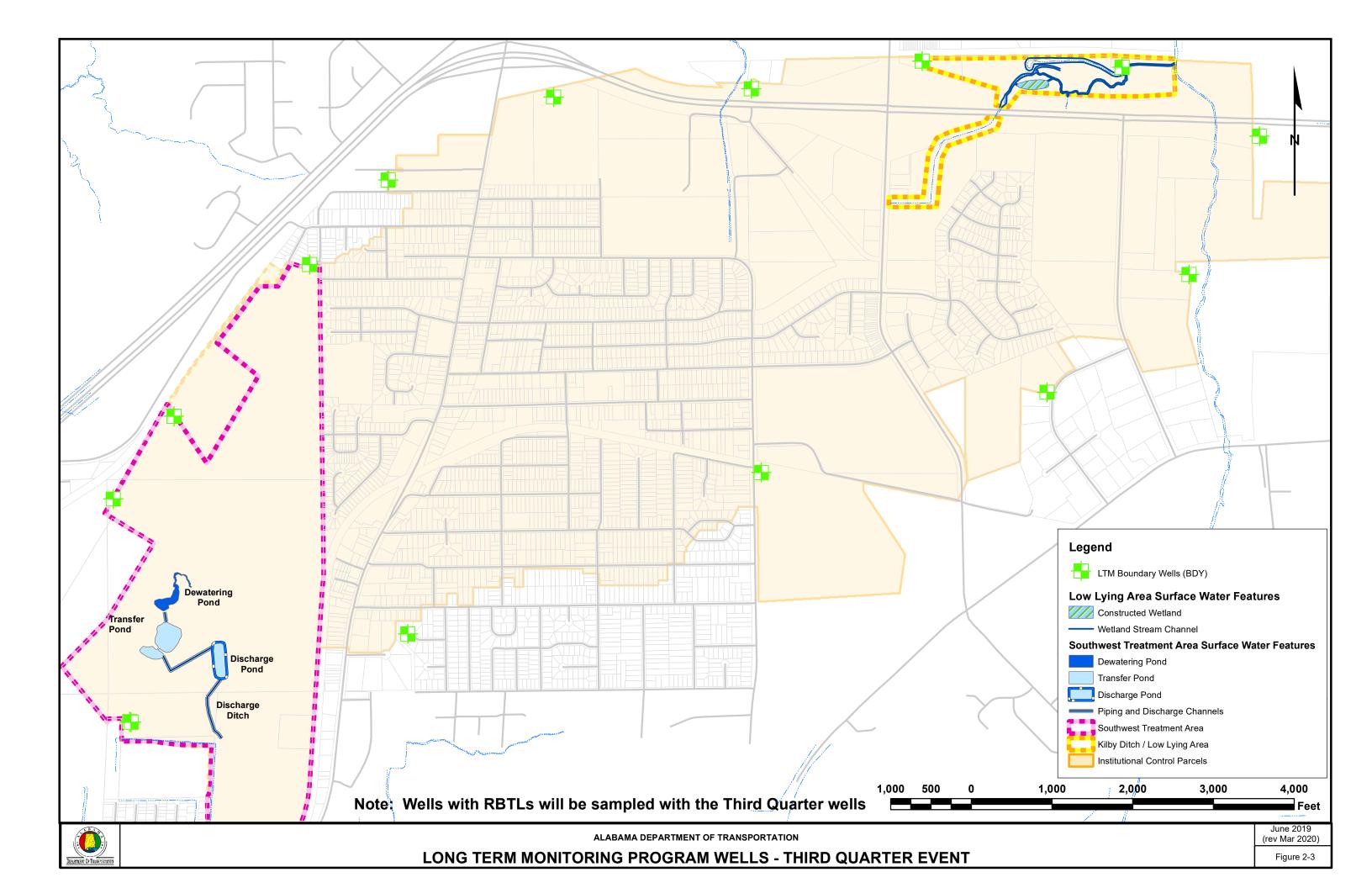

All vapor intrusion screening wells will be sampled First Quarter Event Wells with RBTLs will be sampled First Quarter and Third Quarter Events




Long-Term Monitoring Plan


COLISEUM BOULEVARD PLUME SITE MONTGOMERY, ALABAMA





0

DELETION OF TRANSP

ALABAMA DEPARTMENT OF TRANSPORTATION COLISEUM BOULEVARD PLUME

After Hydraulic Barrier Channel Confluence with Lower Kilby Ditch and Prior to Compliance Point

Hydraulic Barrier **Channel Before** Confluence with Lower Kilby Ditch

Three Mile Branch Monitoring Point TMB-3

LLA-6 LLCP-1 Compliance Point

Lower Kilby Ditch

Small Tributary South of Existing Wetland

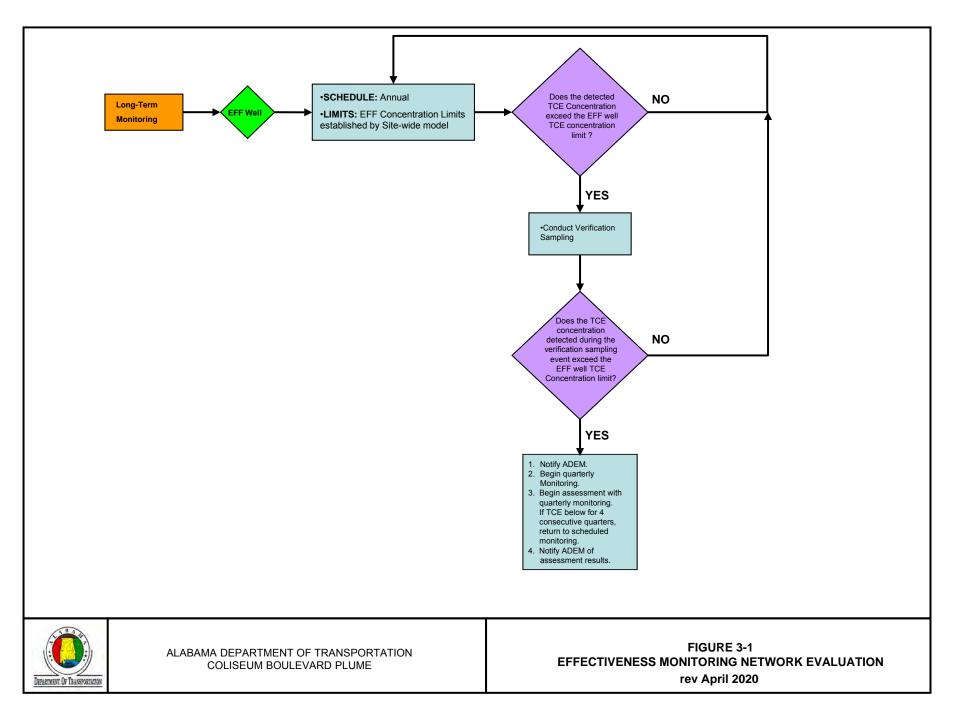
TMB-2

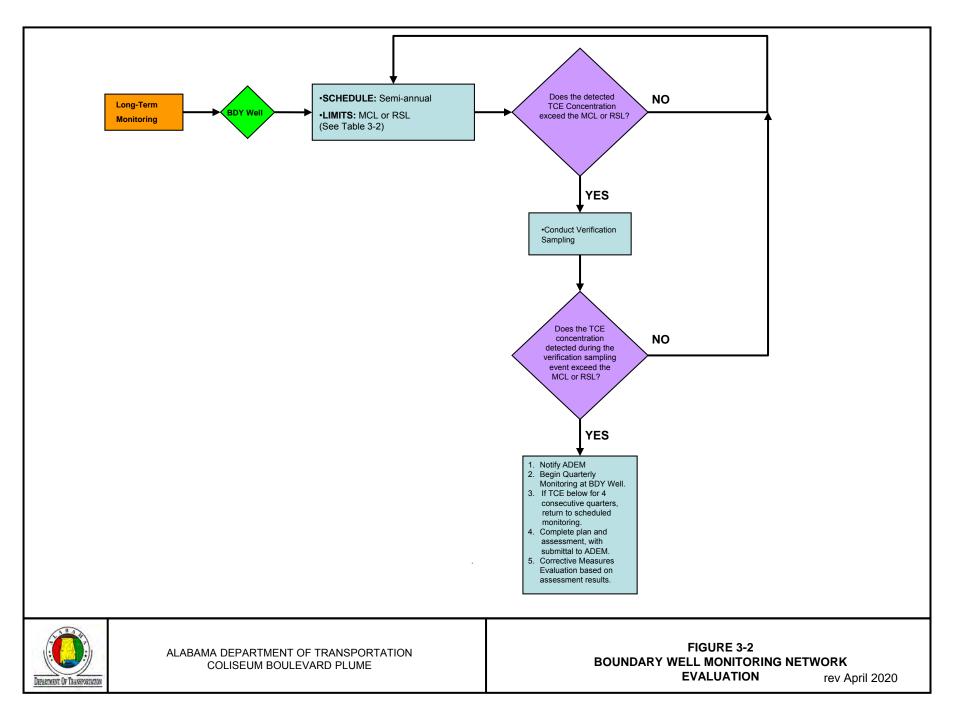
 $(\mathbf{\Delta})$

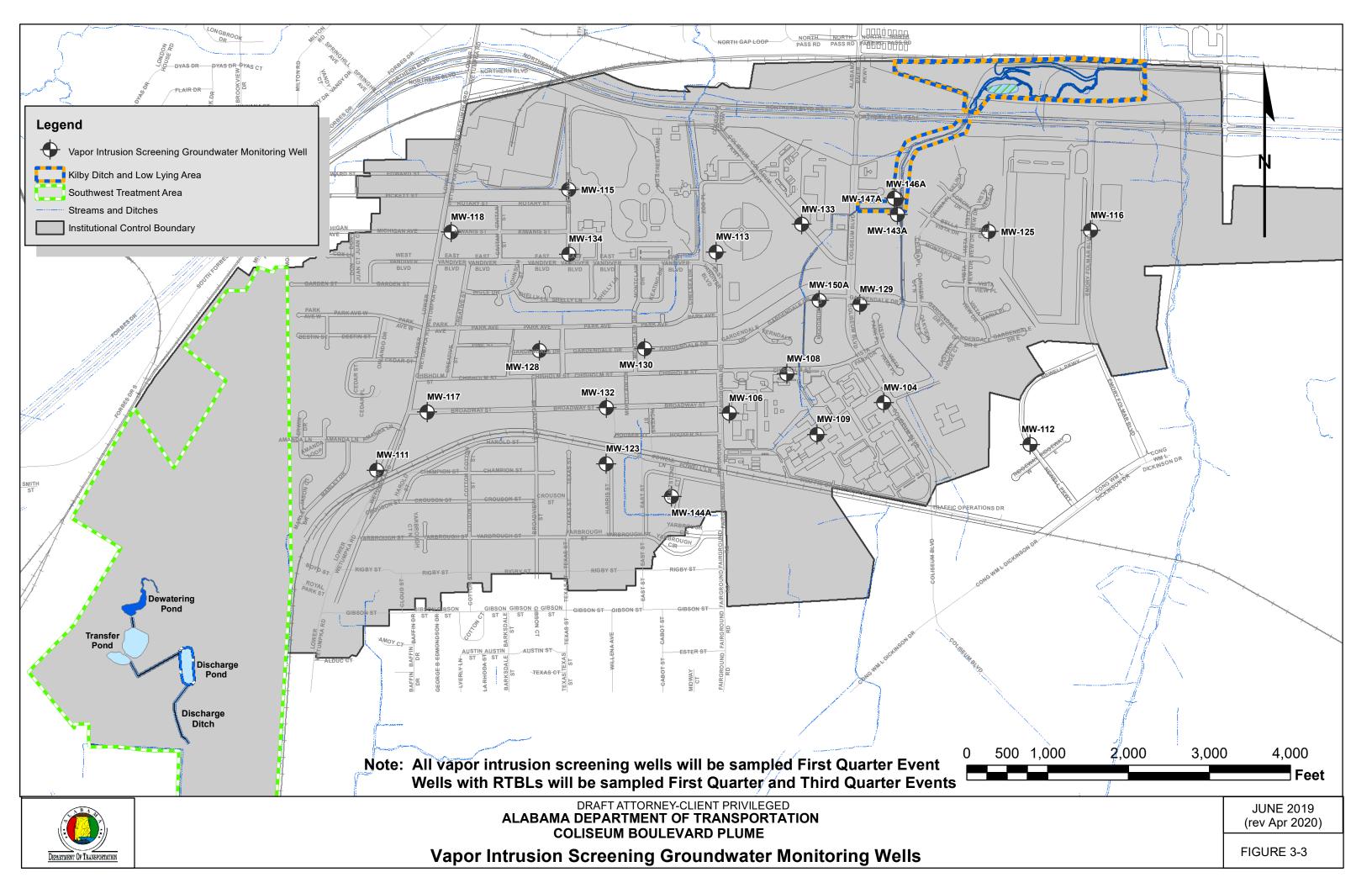
Three Miles Branch Monitoring Point

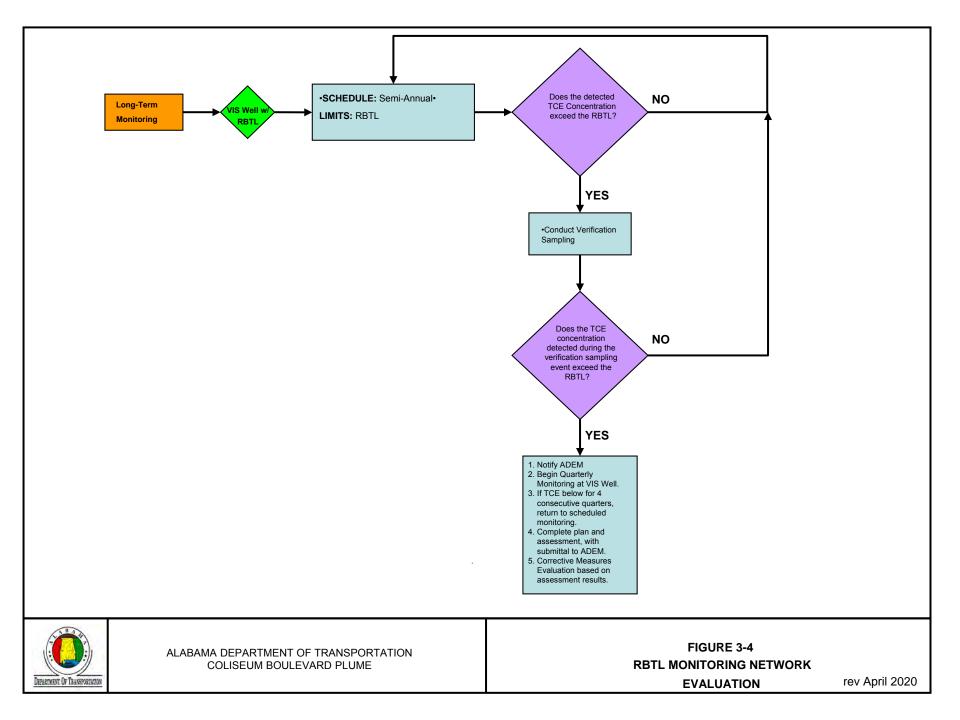
BB

Wetland East of Bama Bud Facility


TMB-1


Three Miles Branch Monitoring Point


June 2019


Figure 2-4

