Alabama Statewide Airport Pavement Management Program Update

Hartselle-Morgan County Regional Airport

Final Report

February 2022

Submitted to

Alabama Department of Aeronautics

Submitted by

Pavement Management – Evaluation – Testing - Design

ALABAMA STATEWIDE AIRPORT PAVEMENT MANAGEMENT PROGRAM UPDATE

Hartselle-Morgan County Regional Airport (5M0)

FINAL REPORT

Prepared For:

Alabama Aeronautics Bureau 1409 Coliseum Blvd. Montgomery, AL 36110

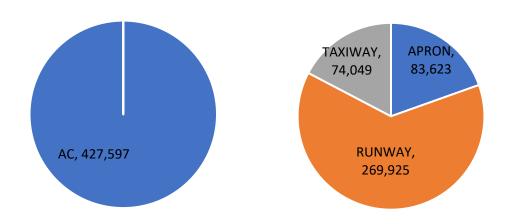
Prepared By:

ALL ABOUT PAVEMENTS, INC. 205 Ramblewood Drive Chatham, Illinois 62629

February 2022

This Page Intentionally Left Blank

Executive Summary


The Jviation Inc. team, which included All About Pavements, Inc., (API) was awarded a contract by the Alabama Department of Transportation's Aeronautics Bureau (ALDOT) in 2018 to update the existing Alabama Statewide Airport Pavement Management Program (APMP). The scope of this project includes the airside pavement network at Hartselle-Morgan County Regional Airport (5M0).

The following APMP tasks were completed to achieve the project objectives at 5M0:

- > Update the PAVER work history with records review information provided by ALDOT
- > Conduct a visual pavement condition survey of the airfield pavements
- Update the PAVER database with inventory and condition data
- Update Maintenance and Rehabilitation (M&R) policies and unit costs
- > Develop a 7-Year Pavement Capital Improvement Program (PCIP) with associated cost estimates

ES.1 Pavement Inventory

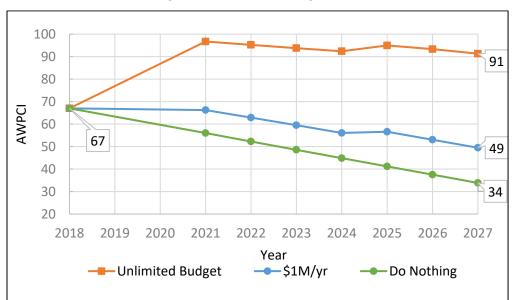
There are 8 branches and 11 sections within 5MO's pavement network with a total surface area of approximately 0.43 million square feet (sf). Figure ES-1 shows the distribution of the pavement network by surface type and branch use.

Figure ES-1: Pavement Area (sf) by Surface Type and Branch Use.

ES.2 Pavement Condition

Visual pavement inspections were conducted in October 2018 using the Pavement Condition Index (PCI) method as specified in ASTM D5340-12 and FAA AC 150/5380-6C. The PCI is a numerical rating scale from 0 to 100 that provides a measure of the pavement's functional surface condition. The overall area-

weighted network PCI (AW PCI) for the 5M0 pavement network is 67, representing a "Fair" condition. The network area-weighted pavement age (AW Age) is 18 years.


Table ES-1 is a listing of the section PCI values and ratings.

Branch ID	Name	Section ID	Surface	Area (sf)	PCI	PCI Category
A01	Apron 01	01	AC	46,877	77	Satisfactory
A01	Apron 01	02	AC	36,746	58	Fair
R1836	Runway 18-36	01	AC	269,925	66	Fair
TC01	Taxiway Connector 01	01	AC	6,760	50	Poor
TC02	Taxiway Connector 02	01	AC	9,027	68	Fair
THANG01	Taxiway Hangar 01	01	AC	10,481	63	Fair
THANG01	Taxiway Hangar 01	02	AC	7,476	60	Fair
THANG02	Taxiway Hangar 02	01	AC	11,954	71	Satisfactory
THANG02	Taxiway Hangar 02	02	AC	17,279	98	Good
TTRW18	Taxiway Turnaround RW18	01	AC	5,485	60	Fair
TTRW36	Taxiway Turnaround RW36	01	AC	5,587	54	Poor

Table ES-1: 5M0 Section PCI Values and Ratings.

ES.3 Pavement Maintenance and Repair Funding Levels

The PAVER database was updated with 2018 condition data, maintenance and repair (M&R) policies, and unit costs; which were then used to evaluate the effect of multiple funding levels on the overall future pavement condition. Figure ES-2 presents the forecasted 5M0 network PCI values for each funding level.

ES.4 Pavement Capital Improvement Program (PCIP)

The analysis output from the unlimited funding budget scenario was used as a starting point in developing the PCIP. For this scenario, sections were grouped into projects to allow for a logical construction sequence. Table ES-2 summarizes the 7-year PCIP, which has an estimated total cost of approximately \$2.5 million. These recommendations are based on a network-level evaluation. Project-level evaluations should be conducted prior to developing design and bid package documents.

Project Year	CIP Project	Total Project Cost	Total Project Area, sf	AWPCI Before	AWPCI After
2024	5M0_24-01_Runway 18-36 Rehabilitation	\$1,784,785	296,784	64	100
2025	5M0_25-01_Apron Rehabilitation	\$681,794	101,580	59	100
	Total	\$2,466,580			

Table ES-2: Summary of Pavement Capital Improvement Program.

In addition to the major rehabilitation needs that are identified in the PCIP, PAVER was used to develop maintenance activities to repair specific PCI distresses in Year 1. The estimated costs for these maintenance activities are \$12,534 as summarized in Table ES-3.

Table ES-3: Summary of Localized Maintenance Plan.

Policy	Work Description	Work Quantity	Work Unit	Work Cost
Droventive	Crack Sealing - AC	1,237	Ft	\$4,888
Preventive	Patching - AC Full-Depth	305	SqFt	\$7,647
			Total	\$12,534

TABLE OF CONTENTS

1	INTR		1-1
	1.1.	Overview	1-1
	1.2.	WORK SCOPE	1-1
	1.3.	PAVEMENT MANAGEMENT CONCEPT	1-2
2	AIRF	IELD PAVEMENT INVENTORY	2-1
	2.1.	INTRODUCTION	2-1
	2.2.	PAVEMENT INVENTORY	2-1
	2.3.	CLIMATIC CONDITIONS	2-1
	2.4.	PAVEMENT NETWORK DEFINITION	2-2
	2.5.	INVENTORY SUMMARY	2-3
3	PAV	EMENT CONDITION	3-1
	3.1.	INTRODUCTION	3-1
	3.2.	PAVEMENT CONDITION RATING METHODOLOGY	3-1
	3.3.	DISTRESS TYPES	3-2
	3.4.	Additional PCI-based Indices	3-3
	3.5.	PCI SURVEY RESULTS	3-4
	3.6.	PCC PAVEMENTS	3-5
4	PAV	EMENT CAPITAL IMPROVEMENT PROGRAM	4-1
	4.1.	INTRODUCTION	4-1
	4.2.	Performance Modeling	4-1
	4.3.	CRITICAL PCI VALUES	4-3
	4.4.	M&R Policies and Unit Costs	4-3
	4.5.	PAVEMENT CIP DEVELOPMENT	
	4.6.	PAVEMENT CAPITAL IMPROVEMENT PROGRAM	4-6

-•

LIST OF TABLES

Table 2.1: Average Annual Temperatures and Rainfall for 5M0	2-2
Table 2.2: PCI Sampling Rate for AC Surfaces.	2-3
Table 2.3: 5M0 Pavement Branches	2-3
Table 2.4: 5M0 Pavement Age.	2-3
Table 3.1: Pavement Condition Index Rating Scale	3-2
Table 3.2: Section PCI	3-5
Table 4.1: M&R Activities and Unit Costs.	4-4
Table 4.2: Summary of M&R Funding Level Analyses	4-6
Table 4.3: Summary of 7-Year PCIP by Project.	4-7
Table 4.4: Summary of 7-Year PCIP by Project and Section	4-7
Table 4.5: Summary of Year-1 Maintenance Plan	4-8

LIST OF FIGURES

Figure 1.1: Pavement Management Concept.	1-2
Figure 2.1: Hartselle-Morgan County Regional Airport.	2-1
Figure 2.2: 5M0 Pavement Area by Surface Type	2-4
Figure 2.3: 5M0 Pavement Area by Branch Use.	2-4
Figure 3.1: FOD Potential Rating Scale	3-3
Figure 3.2: Pavement Condition by Branch Use.	3-4
Figure 3.3: Pavement Condition by Percent of Area	3-4
Figure 3.4: PCC Apron Condition Rating.	3-6
Figure 4.1: PCI Forecasting	4-2
Figure 4.2: Family Curves.	4-2
Figure 4.3: Budget Analysis Process	4-5
Figure 4.4: M&R Funding Levels.	4-5

APPENDICES

Appendix A: Pavement Inventory Report

Appendix B: PMP Maps

B1: Inventory Maps

- B1A: Branch Identification
- **B1B:** Section Identification
- B1C: Sample Unit Layout
- B1D: Pavement Type
- B1E: Branch Use
- B1F: Pavement Age
- **B2: Surface Condition Maps**
 - B2A: 7-Color PCI
 - B2B: 3-Color PCI
 - **B2C: FOD Rating**
 - B2D: Survey Photo Locations
- B3: Pavement Capital Improvement Program (PCIP) Maps B3A: 2027 Forecasted PCI without PCIP B3B: Repair Type B3C: PCIP Recommendations
- Appendix C: Overview of Pavement Distresses
- Appendix D: Detailed Pavement Condition Data (electronic version only)
- Appendix E: Distress Summary Report

Appendix F: Pavement Condition Reports F1: Section Forecasted Pavement Condition Rating F2: Branch PCI Rating F3: Branch FOD Rating

- Appendix G: Safety and Preventive Maintenance Policies
- Appendix H: M&R Unit Costs
- Appendix I: Pavement Capital Improvement Program (PCIP) I1: CIP Summary

I2: Year 1 Maintenance Plan

Appendix J: USB Thumb Drive – FINAL ONLY

- Final Report in PDF format
- Geo-referenced Field Photos

1 Introduction

1.1. Overview

The Alabama Department of Transportation's Aeronautics Bureau (ALDOT) is responsible for preserving and enhancing Alabama's air transportation system, which consists of 72 airports throughout the State. ALDOT implemented an Airport Pavement Management Program (APMP) in 2008 using the PAVER system. ALDOT awarded a project in 2018 to Jviation Inc. (Jviation) to update the System Plan and conduct an Economic Analysis for the Alabama airports. The scope of work also included an update of the APMP for 59 airports, which was conducted by All About Pavements, Inc., (API), a Jviation team member.

With this update of the APMP, the Alabama airports continue to be eligible for FAA funding for major pavement rehabilitation work under the Airport Improvement Program (AIP) since an APMP meets the pavement maintenance management requirements described in Appendix A of AC 150/5380-6C.

This report discusses the evaluation of the airside pavements at Hartselle-Morgan County Regional Airport (5M0), the current and forecasted pavement condition, and the development of the Pavement Capital Improvement Program (PCIP).

1.2. Work Scope

The goals of the Alabama Statewide Airport Pavement Management Update program are as follows:

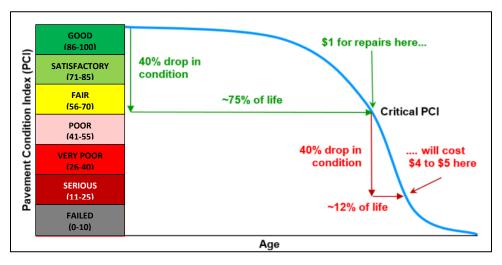
- Conduct a visual pavement inspection of the asphalt surfaced pavements for 59 of the 72 public use airports in Alabama.
- > Based on the visual inspection analysis results, develop a 7-year PCIP for each airport.

The scope of work is as shown below:

- Conduct a Records Review
- Update Pavement Network Definition
- Conduct Pavement Condition Surveys
- Update and customize existing APMP PAVER database
- > Develop PCIP and associated project cost estimates
- Prepare Draft and Final Reports
- > Develop a web-based viewer for reporting APMP data

As required in the Scope of Work, a detailed pavement condition survey was not conducted for any Portland Cement Concrete (PCC) aprons and PCC taxiways longer than 2,000 ft. Instead, a condition rating of "Good", "Fair", or "Poor" was assigned based on the overall pavement condition.

The deliverable products include a PAVER 7.0 database, individual airport evaluation reports, a statewide summary report, and the web viewer. The 5M0 report will be one of the 59 individual airport reports that will be available on ALDOT's website.



1.3. Pavement Management Concept

An APMP provides an integrated framework for comprehensive evaluation and decision making for managing airfield pavements. The essential components of an effective APMP provide for an objective evaluation of the condition of existing pavements, identification of short-term and long-range major rehabilitation work, necessary improvements in the pavement structural capacity, and the recurring maintenance work that should be completed each year. The APMP will also provide a budget for each of these types of pavement construction.

Historically, most organizations have made maintenance decisions based on past experience, without the benefit of documented data or analysis. This practice does not encourage life cycle cost analysis, nor the evaluation of cost effectiveness of alternate scenarios, and can lead to the inefficient use of funds. With limited allocated funding for Maintenance and Repair (M&R) Program projects, a defined procedure for setting priorities and schedules that will maximize the funds available is more important than ever.

In examining the lifespan of a 20-year pavement, a "Good" to "Fair" condition rating may last only 5 to 15 years. After that point, the rate of deterioration of pavements accelerates sharply as the age of the pavement increases, and within five years, the pavement may deteriorate to the point of failure. In order to extend pavement life, maintenance and repairs need to be scheduled and performed before the pavement surface declines to a "fair" condition. The point at which rehabilitation can be done before the steep decline occurs is called the "critical PCI", and is generally considered to occur when the Pavement Condition Index (PCI) is between 60 and 70 for general aviation airports. If the work is done before deterioration accelerates, the cost of rehabilitation can be reduced as shown in Figure 1.1.

Figure 1.1: Pavement Management Concept.

2 Airfield Pavement Inventory

2.1. Introduction

5M0 is a General Aviation (GA) airport located approximately 2 miles south of Hartselle. The airport was activated in September 1965 and is owned and operated by the City of Hartselle. Figure 2.1 shows an aerial image of the airport.

Figure 2.1: Hartselle-Morgan County Regional Airport.

(Source: Google Earth)

2.2. Pavement Inventory

5M0 consists of one runway, a parallel taxiway, two connector taxiways, and an apron. The total pavement area is approximately 0.43 million square feet. All pavements at 5M0 are Asphalt Concrete (AC) surfaced. A complete listing of the pavement sections is included in Appendix A. Runway 18-36 is 3,599 ft. long and 75 ft. wide.

A records search was undertaken to identify any preservation or rehabilitation work that has occurred at 5M0 since the last APMP update in 2009. The records for "Airfield Pavement Rejuvenation and Marking" from 2010 that were provided by ALDOT were reviewed, and the PAVER database was updated with work history information:

2.3. Climatic Conditions

Table 3.1 provides a summary of the climatic data for the geographic region that includes 5M0. As the table shows, the pavements at 5M0 are exposed to freeze-thaw cycles from December to February. The mean air temperature for January ranges from an average low of 29 degrees °F to an average high of 50 degrees °F. The average annual rainfall at 5M0 is near 56 inches.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
High Temp (°F)	50	55	64	72	79	87	90	90	84	74	63	53
Low Temp (°F)	29	32	39	46	55	63	68	66	60	47	39	32
Precip. (in)	5.2	4.5	6.5	5.1	4.5	4.3	4.3	3.9	4.4	3.3	4.6	4.9

Table 2.1: Average Annual Temperatures and Rainfall for 5M0.

Source: <u>www.intellicast.com</u>

2.4. Pavement Network Definition

A key element in developing an APMP system is defining the pavement network, which is the process of dividing an agency's pavements into a hierarchical order that facilitates inspection and M&R planning. The 5MO network (e.g. all airside pavements) is then divided into branches, which are a readily identifiable part of the pavement system and have distinct functions. For airports, branches typically consist of individual runways, taxiways and aprons. Figure B1A in Appendix B shows the branches at 5MO.

Once branches have been defined, pavement evaluation and analysis techniques require the airfield pavement system to be broken up into discrete sections. A pavement "section" is the smallest management unit that is used when considering the application and selection of maintenance and rehabilitation (M&R) treatments, and is defined in Section 2.1.8 of ASTM D 5340-12 as "a contiguous pavement area having uniform construction, maintenance, usage history, and condition. A section should also have the same traffic volume and load intensity." A complete list of the pavement inventory and the corresponding section designations are included in Appendix A. Figure B1B presents the section layout.

To facilitate the visual survey of the airside pavement, each section is further subdivided into conveniently defined sub-section areas, or sample units. Similar sizing is critical as studies have found that maintaining the size of the sample units to within 40 percent of the established norm may reduce the standard error of the average PCI values. To meet that criteria, ASTM recommends that sample units for asphalt pavements be 5,000 square feet (± 2,000).

Table 2.2 was used as a guideline in developing sampling rates that reflect typical rates that are used for other large pavement networks. In general, this sampling rate will not provide a 95% confidence level with a standard error of 5 PCI points. A higher level of sampling is recommended before a project-level rehabilitation design is developed for a pavement section or facility.

Sample units that include a one-time occurrence of a distress (i.e. a large patch) or an unusual severity or quantity of a distress seen elsewhere, were designated as "additional" sample units as described in the ASTM D5340 PCI procedure. This allows the PCI to be calculated without extrapolating the aberrant distress throughout the section as a whole. In Appendix B, Figure B1C shows the sample unit layout for 5M0.

Total Samples	Samples to Inspect
1	1
2	2
3 – 6	3
7 – 13	4
14 – 39	5
> 39	15 percent, but less than 12

Table 2.2: PCI Sampling Rate for AC Surfaces.

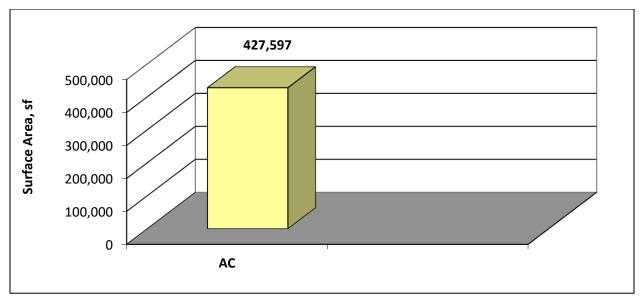
2.5. Inventory Summary

There are 8 branches (facilities) at 5M0 that include 11 pavement sections and a total area of approximately 0.43 million square feet of paved surfaces, as shown in Table 2.3.

Branch ID	Branch Name	Branch Name Branch Use Area, s		Number of Sections
A01	Apron 01	APRON	83,623	2
R1836	Runway 18-36	RUNWAY	269,925	1
TC01	Taxiway Connector 01	TAXIWAY	6,760	1
TC02	Taxiway Connector 02	TAXIWAY	9,027	1
THANG01	Taxiway Hangar 01	TAXIWAY	17,957	2
THANG02	Taxiway Hangar 02	TAXIWAY	29,233	2
TTRW18	Taxiway Turnaround RW18	TAXIWAY	5,485	1
TTRW36	Taxiway Turnaround RW36	TAXIWAY	5,587	1
		Total	427,597	11

Table 2.3: 5M0 Pavement Branches.

Table 2.4 shows the distribution of airfield pavement by age with the area-weighted age being 18 years for all airside pavements at 5M0.


Table 2.4: 5M0 Pavement Age.

Age (Years)	Number of Sections	Percent of Area	Area, sf
0 – 5	0	0	0
6 - 10	1	4	17,279
11 – 15	1	11	46,877
16 – 20	7	75	319,935
> 20	2	10	43,506

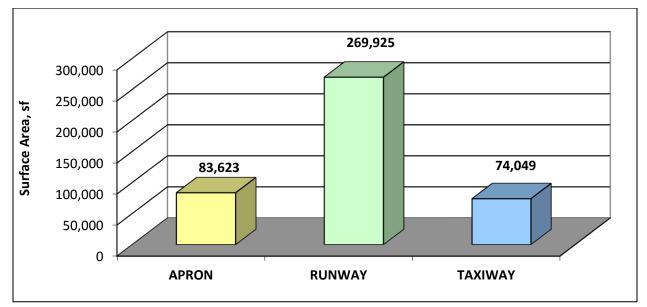


Figure 2.2 shows the distribution by surface type. Figure 2.3 presents the distribution by pavement use (e.g. runway, taxiway, and apron).

Figure 2.2: 5M0 Pavement Area by Surface Type.

Maps B1D, B1E, and B1F show the pavement type, branch use, and pavement age, respectively.

3 Pavement Condition

3.1. Introduction

A visual PCI survey of the airside pavements at 5M0 was conducted in order to assist in the development of a realistic PCIP. The PCI survey measures and records pavement distresses that exist within each of the inspected sample units. This survey was conducted in October 2018 by a two 2-person team. The survey was performed in accordance with the methods described in ASTM D 5340-12 and FAA AC 150/5380-7B, using the sampling rates from Chapter 2 of this API report.

During the pavement survey, Quality Control (QC) and data verification were performed on both the individual distresses and the calculated section PCI values. QC included the following activities;

- Review of distress quantities to identify data entry errors (100% review at the sample unit level). General guidance was used from ASTM D5340-12, section 13, which addresses the precision of distress quantities that are recorded during PCI surveys.
- Duplicate surveys were performed to ensure consistency between each of the inspectors in a 2person PCI survey team.

3.2. Pavement Condition Rating Methodology

The PCI is a measure of the pavement's functional surface condition. It provides insight into the causes of each distress, and whether the distress is primarily caused by load, climatic conditions, and other material related deficiencies. The PCI is a numerical rating (on a scale of 0 to 100) that is based on the type, severity and quantity of each distress that is found in an inspected sample unit.

The PCI survey results are displayed using seven categories and ratings in accordance with the ASTM, but can also be presented using a simplified 3-category rating system for use in comparing with other distress related indices, as shown in Table 3.1.

ALABAMA

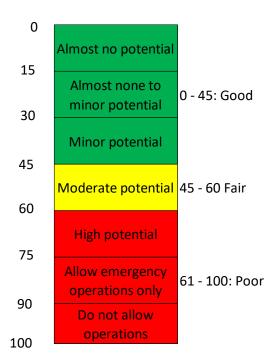
	Simplified PCI Color Legend	ASTM PCI Color Legend	PCI Range	PCI Ratings and Definition
GOOD			86-100	GOOD: Pavement has minor or no distresses and should require only routine maintenance.
GO			71-85	<u>SATISFACTORY</u> : Pavement has scattered low-severity distresses that should require only routine maintenance.
FAIR			56-70	<u>FAIR</u> : Pavement has a combination of generally low- and medium-severity distresses. Near-term maintenance and repair needs may range from routine to major.
			41-55	<u>POOR</u> : Pavement has low-, medium-, and high-severity distresses that probably cause some operational problems. Near-term M&R needs range from routine to major. requirement for
POOR			26-40	VERY POOR: Pavement has predominantly medium- and high- severity distresses that cause considerable maintenance & operational problems. Near-term M&R needs will be major.
PO(11-25	<u>SERIOUS</u> : Pavement has mainly high-severity distresses that cause operational restrictions; immediate repairs are needed.
			0-10	<u>FAILED</u> : Pavement deterioration has progressed to the point that safe aircraft operations are no longer possible; complete reconstruction is required.

Table 3.1: Pavement Condition Index Rating Scale.

3.3. Distress Types

The ASTM D5340 standard considers 17 distresses, which tend to fall into one of the following four cause categories:

- Load related: AC distresses include alligator cracking, corrugation, depression, polished aggregate, rutting and slippage cracking; PCC distresses include corner breaks, longitudinal cracking, divided slabs, polished aggregate, pumping and joint spalling.
- Climate and durability related: AC distresses include bleeding, block cracking, joint reflection cracking, longitudinal and transverse (L&T) cracking, swelling, raveling, and weathering; PCC distresses include blow-ups, "D" cracking, longitudinal cracking, pop-outs, pumping, scaling, shrinkage cracks, and joint and corner spalling.
- Moisture & Drainage related: AC distresses include alligator cracking, depressions, potholes and swelling; PCC distresses include corner breaks, divided slabs and pumping.
- > <u>Other factors</u>: Oil spillage, jet blast erosion, bleeding, patching and concrete slab joint faulting.


As described above, distress may have more than one cause. For example, depressions may be caused by incorrect compaction during construction, or by subgrade softening due to environmental factors. In addition, a distress may be initiated by one cause but may progress to a distress of higher severity by another cause. Therefore, engineering judgment is critical in analyzing the actual causes of the distress.

Distress descriptions provided in Appendix C were taken from the "PCI Field Manual," developed by the U.S. Army Construction Engineering Research Lab (CERL), latest edition. Appendix C provides a detailed explanation of each type of AC and PCC surface distress.

3.4. Additional PCI-based Indices

The distress data used to compute PCI can also be used to calculate additional indices that are helpful in understanding the condition of the pavement and developing PCIP recommendations. One additional index that was computed is the Foreign Object Damage (FOD) potential index.

The FOD index was developed by the US Air Force and is described in detail in the US Army Corp of Engineers Engineering Technical Letter (ETL) 04-09, Pavement Engineering Assessment (EA) Standards. Loose objects on an airfield pavement surface resulting from pavement distresses can be detrimental to aircraft engines, specifically engines that are low to the ground. The objects are ingested into the engines causing costly damage and presenting a safety hazard. Not all pavement distresses create a FOD potential. Therefore, an additional index was identified that uses the results of the PCI distress survey. As shown in Figure 3.1, the scale ranges from 0 to 100 with 0 being no FOD potential. Note that the FOD index uses a simplified three color scale.

Figure 3.1: FOD Potential Rating Scale.

3.5. PCI Survey Results

The airside pavements at 5M0 include 11 sections with 86 sample units. The sample number of sample units that were surveyed in the field is 28, which is 33 percent of the total samples. Data from the inspected sample units were input into the PAVER database and a resultant PCI for each section was computed.

Figure 3.2 presents the area-weighted PCI by use and the overall airside network.

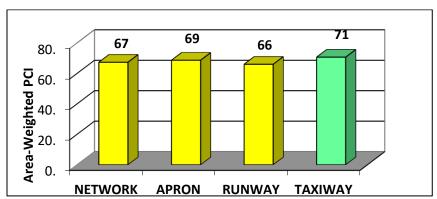
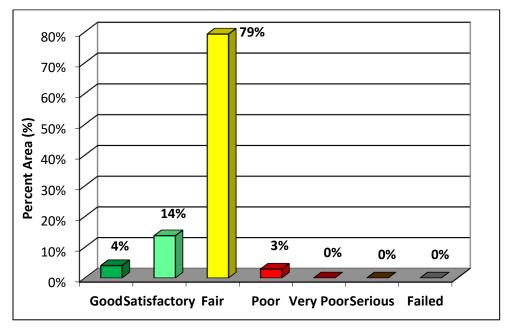



Figure 3.2: Pavement Condition by Branch Use.

Figure 3.3 shows the distribution of the 5MO pavement network by condition. Approximately 3 percent of the network is in "Poor" or worse condition.

Figure 3.3: Pavement Condition by Percent of Area.

Table 3.2 is a listing of the section PCI.

Branch ID	Name	Section ID	Surface	Area (sf)	PCI	PCI Category	FOD
A01	Apron 01	01	AC	46,877	77	Satisfactory	35
A01	Apron 01	02	AC	36,746	58	Fair	57
R1836	Runway 18-36		AC	269,925	66	Fair	48
TC01	Taxiway Connector 01	01	AC	6,760	50	Poor	65
TC02	Taxiway Connector 02	01	AC	9,027	68	Fair	46
THANG01	Taxiway Hangar 01	01	AC	10,481	63	Fair	51
THANG01	Taxiway Hangar 01	02	AC	7,476	60	Fair	51
THANG02	Taxiway Hangar 02	01	AC	11,954	71	Satisfactory	42
THANG02	Taxiway Hangar 02	02	AC	17,279	98	Good	11
TTRW18	18 Taxiway Turnaround RW18		AC	5,485	60	Fair	54
TTRW36	Taxiway Turnaround RW36	01	AC	5,587	54	Poor	61

Table 3.2: Section PCI.

Figure B2A and B2B in Appendix B are maps of the section PCI in 7- and 3-scale categories, respectively. Figures B2C is a map of the FOD rating. Appendix D contains a detailed report of the PCI values and distress type, quantity, and severity data for each sample unit that was surveyed in a section. Appendix E is a summary report of the extrapolated distress data at the section level.

Appendix F contains current section and branch PCI data and forecasted section PCI values. FOD values by section and branch are also presented. Figure B2D in Appendix B shows the locations of the photos that were taken during the survey. Photos are included in Appendix J.

3.6. PCC Pavements

As stated earlier, the project scope did not include a detailed pavement condition survey for any Portland Cement Concrete (PCC) aprons. For these pavements, a rating of "Good", "Fair", or "Poor" was assigned based on the overall pavement condition. Figure 3.4 shows the condition rating for the PCC aprons at 5MO.

Figure 3.4: PCC Apron Condition Rating.

4 Pavement Capital Improvement Program

4.1. Introduction

PCI data were collected and entered into the PAVER database. In addition, the database customization included the following components, which are described in detail in this chapter.

- 1. Performance Modeling
- 2. Maintenance & Repair (M&R) Triggers (Critical PCI)
- 3. M&R Policies
- 4. Unit Costs

Once the database was customized, it was used to run budget analysis scenarios and develop a 7-year PCIP.

4.2. Performance Modeling

To determine long-term M&R needs, a APMP must be able to predict future pavement condition. Future pavement condition is predicted using equation models that are generated from current and historical PCI data. Equation models are developed by grouping pavements based on similar performance characteristics such as region, construction history, surface type, traffic, priority and use. Mathematical techniques such as straight-line extrapolation and regression that include boundary and outlier filters are used to develop models that provide the best fit equation for the pavement condition data. PAVER's Prediction Modeling module was used to develop pavement performance models that are commonly referred to as 'Family Curves'.

Prediction models are used at the section level to compute future conditions based on the typical performance of the pavement sections that are included in each model. Future condition is computed by defining its position relative to the prediction model. The section prediction curve, or equation, is drawn through the current PCI-age point for each specific section. Since the shifted curve will run parallel to the computed prediction model, the predicted condition can be computed for any future age. Figure 4.1 is an illustration of this process.

Prediction models provide an effective way to compute future pavement performance based on past and current conditions, and pavement maintenance and rehabilitation practices. As new PCI inspection surveys are conducted, these models should be updated accordingly. In the case of the Alabama statewide airport pavement network, the best fit family curves were developed for each region by grouping pavements according to branch use (e.g. runway, taxiway) and surface type (e.g. AC, AAC, and APC). The family curves for ALDOT were developed based on branch use and are presented in Figure 4.2.

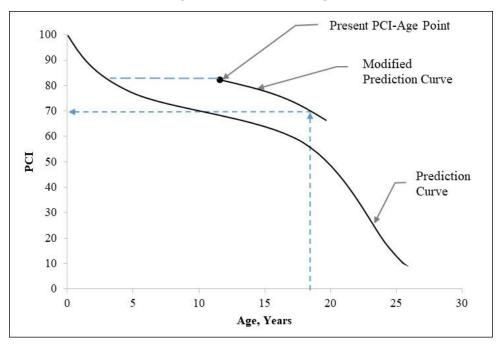
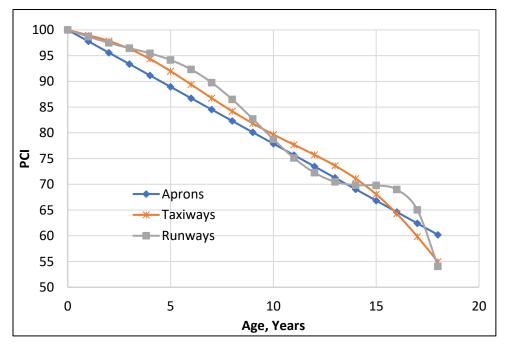



Figure 4.1: PCI Forecasting.

Figure 4.2: Family Curves.

4.3. Critical PCI Values

The Critical PCI value is defined as "the PCI value at which the rate of PCI loss increases with time, or the cost of applying localized preventive maintenance increases significantly." This definition is incorporated into PAVER in defining and measuring the critical PCI values. These values, or M&R triggers, are assigned for each prediction model. As such, the critical PCI values are directly related to the branch use.

These critical PCI levels are selected based on several factors including a review of performance models; experience; other airport triggers; and acknowledge that time is required for funding approval and design. Note that preventive maintenance is recommended, and it should generally be performed above the critical PCI (trigger) values and Major M&R is generally performed below them. The critical PCI (CP) values were set at 70 for runways and taxiways, and 65 for other pavements.

4.4. M&R Policies and Unit Costs

M&R policies refer to the activities that are applied at different condition levels to maintain and repair a pavement section.

Maintenance activities are localized activities which are typically assigned in the first year of the M&R plan based on the observed distresses. Safety (stopgap) maintenance addresses distresses that would affect operational safety if left unrepaired and is applied to pavements below the critical PCI. Preventive maintenance activities are aimed at slowing the rate of deterioration through consistent maintenance of existing pavements and are generally applied to pavements above the critical PCI. Appendix G presents the policies for preventive and safety maintenance.

Repair activities are conducted for larger areas, typically at the section level and are assigned based on the critical PCI. Repair activities broadly consist of three categories: preservation, rehabilitation, and reconstruction. Pavement preservation involves activities like surface treatments that are used to extend pavement service life and to delay more expensive rehabilitation work. These are applied when the pavement is in relatively good condition and does not exhibit any structural distress. Rehabilitation activities are used to repair pavements below or around the critical PCI and typically include mill and overlay. Reconstruction is recommended when the pavement has deteriorated to a level where rehabilitation is no longer cost effective.

Table 4.1 lists the pavement activity types, the individual activities within each type, and their associated 2020 unit costs. A more detailed description of the M&R activities and the development of the M&R unit costs is presented in Appendix H.

In accordance with ALDOT's focus on preservation, surface treatment is applied to all resurfaced and reconstructed runways, taxiways, and aprons three years after construction work is complete. Taxilanes and T-Hangar pavements are excluded from this requirement. This policy is applicable for projects in the PCIP between 2021 and 2024. For cost estimating, this surface treatment is assumed to have the same cost as the runway surface treatment.

Activity Type	PCI	Activity	Cost/sf
		Seal Cracks – AC (\$/lf)	\$3.95
Maintenance	Note 1	AC Full-Depth Patching	\$25.05
		AC Partial-Depth Patching	\$16.28
Preservation	75-90	Runway Surface Treatment	\$0.57
Fleselvation	75-90	Taxiway and Apron Surface Treatment	\$0.85
	> CP	2" AC OL ²	\$3.78
Rehabilitation	55 - CP	Mill 2" & 2" AC OL	\$4.15
	45 - 55	Mill 2" & 3" AC OL	\$5.18
Reconstruction	0 - 45	AC Reconstruction	\$9.10

Table 4.1: M&R Activities and Unit Costs.

¹ Preventive > CP; Safety (Stopgap) < CP

² For sections with structural distress and PCI > CP

4.5. Pavement CIP Development

The PAVER database, updated with condition data and customized with condition performance priorities, policies, and costs; was used to evaluate the effect of multiple funding levels on the overall future pavement condition. This output was further used to develop the PCIP. Figure 4.3 illustrates the process that PAVER uses in the funding analysis.

The following M&R funding levels were used for the 5MO pavement network to help establish the 7-Year PCIP. Figure 4.4 presents the network area-weighted average PCI for each of the following funding scenarios at the end of the analysis period:

- Unlimited Funding: Unlimited funding is available for all pavement needs. The PCI increases to 91 by 2027.
- Maintain PCI: PAVER could not iterate for this condition and this funding level is therefore excluded.
- <u>Constrained Funding</u>: This scenario constrains the funding to \$1 million each year (total of \$7 million). The PCI decreases to 49 in 2027.
- **Do Nothing:** Performing no M&R would reduce the network PCI from 67 to 34 by 2027.

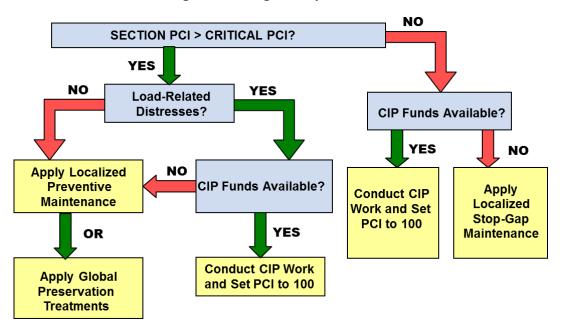


Figure 4.3: Budget Analysis Process.

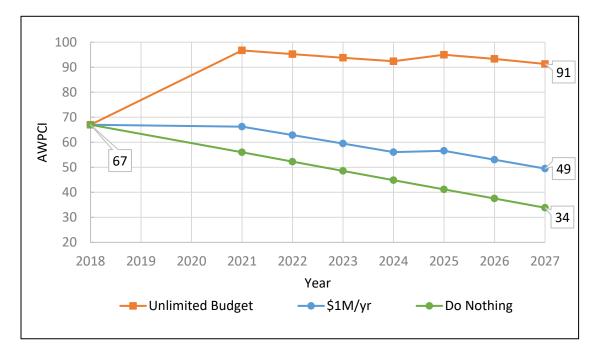


Table 4.2 summarizes the annual funding required for the above analyses. For the unlimited analysis, all pavement needs are funded in the year they are required. Therefore, the unfunded costs are zero. The total funded amount over the 7-year period is approximately \$2.1 million. For the annual funding level of \$1 million per year, funding is prioritized based on the prioritization matrix. When the needs exceed the funding for any year, the remaining sections are transferred to the succeeding year and the amount

for these activities are represented as "unfunded". The "unfunded" repairs in 2027 for this funding level is approximately \$2.9 million.

Year	Unlimited	Maintain PCI ¹	Constrained \$1M/year	Do Nothing
2021	\$1,831,000	-	\$488,000	\$0
2022	\$2,000	-	\$11,000	\$0
2023	\$3,000	-	\$13,000	\$0
2024	\$5,000	-	\$21,000	\$0
2025	\$221,000	-	\$260,000	\$0
2026	\$3,000	-	\$65,000	\$0
2027	\$5,000	-	\$75,000	\$0
Total	\$2,070,000	-	\$932,000	\$0
2027 Backlog	-	-	\$2,933,000	\$4,274,000

Table 4.2: Summary of M&R Funding Level Analyses.

¹ PAVER could not iterate for this condition

Map B3A in Appendix B presents the 2027 forecasted PCI by section when the M&R activities recommended in the CIP are not conducted.

4.6. Pavement Capital Improvement Program

The unlimited funding analysis contains rehabilitation activities for sections from the same branch spread out over the seven-year period, which is not always operationally feasible to construct. The analysis output was treated as a starting point in developing the CIP. Sections were often integrated together to account for construction feasibility and other factors, resulting in larger projects which were more realistic. In addition, each project could contain sections whose condition did not trigger rehabilitation but were included to provide a logical plan which would avoid creating "islands" of newer pavement within a particular feature. For example, if the PAVER analysis showed rehabilitation was required for eight out of 10 sections on a runway, the entire runway would be recommended for rehabilitation to provide a continuous new pavement surface.

Table 4.3 shows the projects and the associated costs for the recommended 7-year PCIP. Table 4.4 is a more detailed view of the PCIP. This table lists the individual pavement section, section level M&R work, section repair cost, surface area and the PCI before the M&R is applied. The costs that are presented represent an annual escalation rate of 3% for the unit costs. The total 7-year PCIP cost is approximately \$2.5 million. Map B3B shows the recommended repair types, while Map B3C presents the recommended projects and activities in the PCIP. Appendix I1 presents a summary of the recommended activities and cost by year for each section at 5M0.

Chapter 4, Pavement Capital Improvement Program

Project Year	CIP Project	Total Project Cost	Total Project Area, sf	AWPCI Before	AWPCI After
2024	5M0_24-01_Runway 18-36 Rehabilitation	\$1,784,785	296,784	64	100
2025	2025 5M0_25-01_Apron Rehabilitation		101,580	59	100
	Total	\$2,466,580			

Table 4.3: Summary of 7-Year PCIP by Project.

Table 4.4: Summary of 7-Year PCIP by Project and Section.

Branch	Section	Area, sf	PCI Before Rehab	Activity	Activity Type	Cost
5M0_21-01	5M0_21-01_Runway 18-36 Rehabilitation					
R1836	01	269,925	52	Mill 2" & 2" AC OLP	Rehabilitation	\$1,573,741
TC01	01	6,760	44	AC Reconstruction	Reconstruction	\$69,224
TC02	01	9,027	59	Mill 2" & 2" AC OLP	Rehabilitation	\$52,630
TTRW18	01	5,485	49	Mill 2" & 2" AC OLP	Rehabilitation	\$31,979
TTRW36	01	5,587	45	AC Reconstruction	Reconstruction	\$57,212
5M0_25-01	_Apron Rel	nabilitation				\$681,794
A01	01	46,877	63	Mill 2" & 2" AC OLP	Rehabilitation	\$281,506
A01	02	36,746	51	Mill 2" & 2" AC OLP	Rehabilitation	\$220,667
THANG01	01	10,481	48	Mill 2" & 2" AC OLP	Rehabilitation	\$62,940
THANG01	02	7,476	46	Mill 2" & 2" AC OLP	Rehabilitation	\$44,895
THANG02	01	11,954	46	Mill 2" & 2" AC OLP	Rehabilitation	\$71,786
					Total	\$2,466,580

The FAA, under the Airport Improvement Program (AIP) provides approximately 90 percent of eligible costs for planning and development of public-use airports included in the NPIAS as grants. The remaining 10 percent of costs are shared between ALDOT and the airport sponsor. The following is the distribution of the 7-yr PCIP cost of \$2.5 million for 5M0:

\triangleright	FAA (90%):	\$2.23 million
\triangleright	ALDOT (5%):	\$0.12 million
\triangleright	Airport Sponsor (5%):	\$0.12 million

The recommendations within the PCIP are based on a network-level study and should be used for planning purposes only. A detailed project-level assessment should be conducted for each project to determine the appropriate repair activities and develop more accurate cost estimates. Table 4.5 summarizes the maintenance activities that are recommended for Year 1 (2021). The estimated cost is approximately \$12,534. A complete listing of the maintenance activities by section is presented in Appendix I2. This may be used as a basis for establishing an annual maintenance budget for the 5M0 pavements.

Table 4.5: Summary of Year-1 Maintenance Plan.

Policy	Work Description	Work Quantity	Work Unit	Work Cost
Droventive	Crack Sealing - AC	1,237	Ft	\$4,888
Preventive	Patching - AC Full-Depth	305	SqFt	\$7,647
			Total	\$12,534

APPENDIX A

INVENTORY

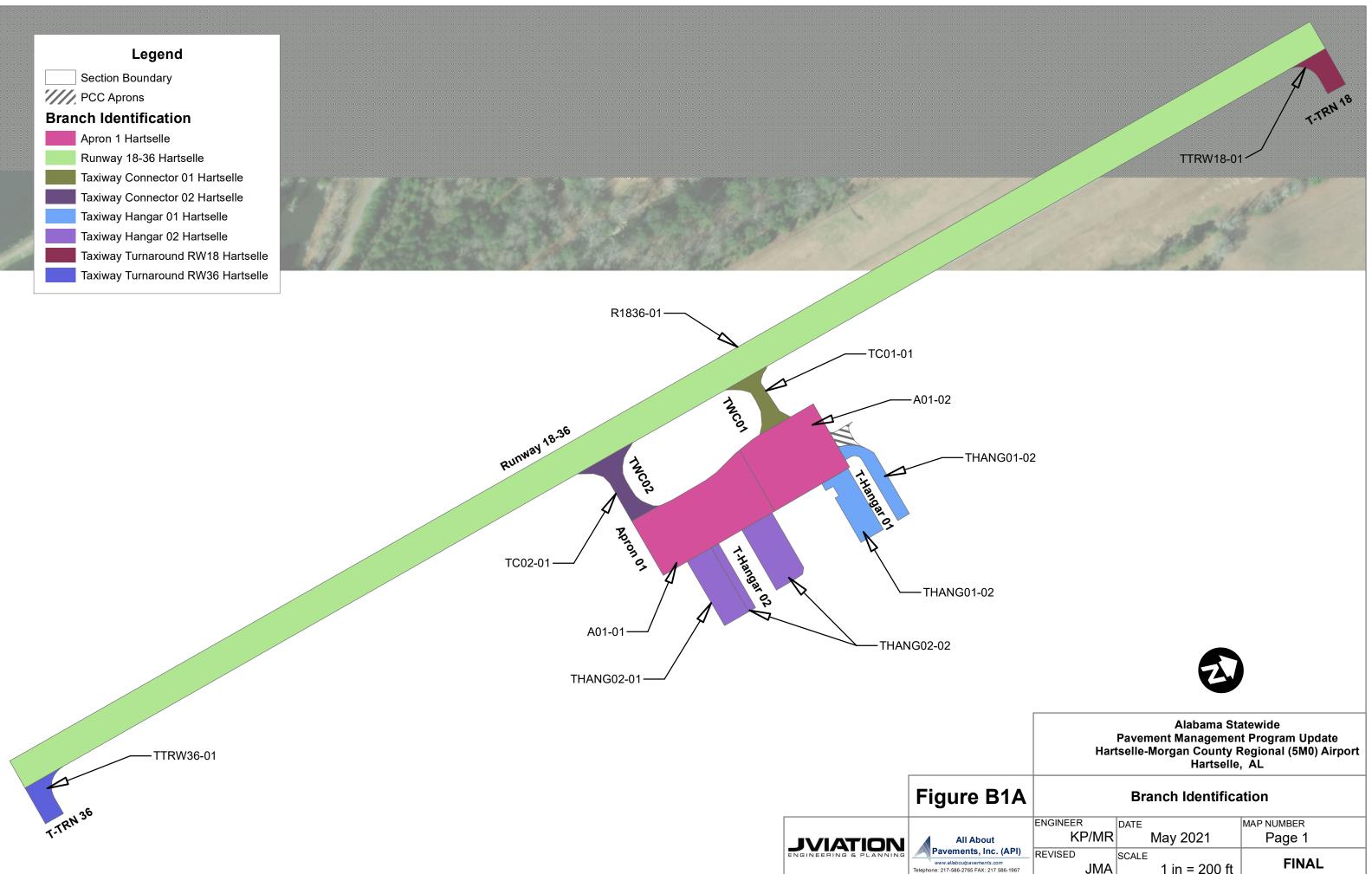
Appendix A

Pavement Inventory Report

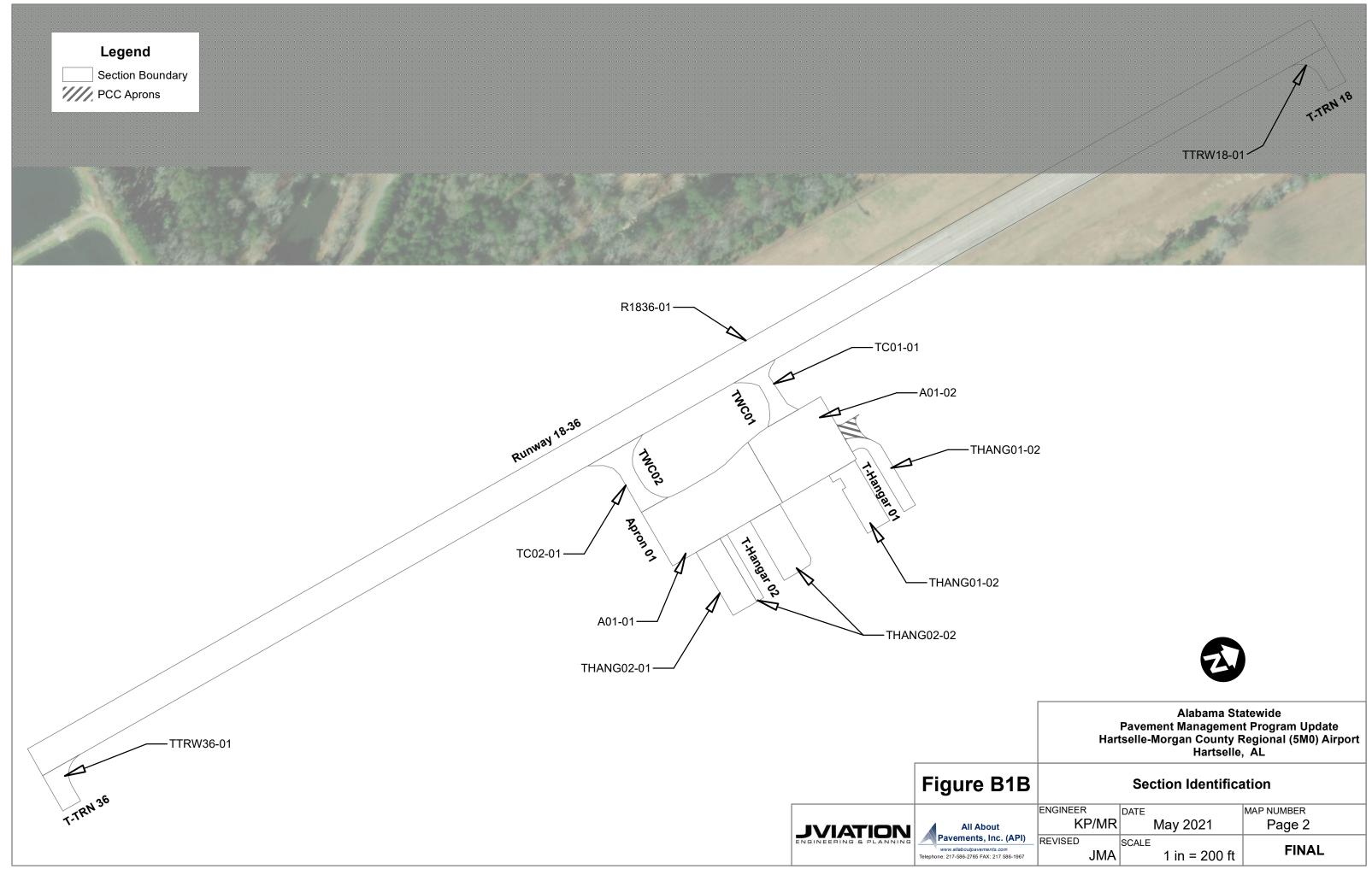
Hartselle-Morgan County Regional Airport (5M0)

Branch ID	Name	Branch Use	Section ID	Rank ¹	Length (ft)	Width (ft)	Area (sf)	LCD ²	Surface ³
A01	Apron 1 Hartselle	APRON	01	S	300	135	46,877	5/29/2008	AC
A01	Apron 1 Hartselle	APRON	02	S	215	135	36,746	10/26/1999	AC
R1836	Runway 18-36 Hartselle	RUNWAY	01	Р	3 <i>,</i> 599	75	269,925	12/19/2001	AC
TC01	Taxiway Connector 01 Hartselle	TAXIWAY	01	S	135	37	6,760	10/12/1999	AC
TC02	Taxiway Connector 02 Hartselle	TAXIWAY	01	S	161	33	9,027	10/17/2003	AC
THANG01	Taxiway Hangar 01 Hartselle	TAXIWAY	02	Т	170	33	7,476	11/4/2001	AC
THANG01	Taxiway Hangar 01 Hartselle	TAXIWAY	01	Т	170	60	10,481	7/3/2002	AC
THANG02	Taxiway Hangar 02 Hartselle	TAXIWAY	02	Т	166	84	17,279	11/2/2013	AC
THANG02	Taxiway Hangar 02 Hartselle	TAXIWAY	01	Т	178	67	11,954	10/7/2004	AC
TTRW18	Taxiway Turnaround RW18 Hartselle	TAXIWAY	01	Р	100	50	5,485	11/4/2001	AC
TTRW36	Taxiway Turnaround RW36 Hartselle	TAXIWAY	01	Р	100	50	5,587	8/14/2000	AC

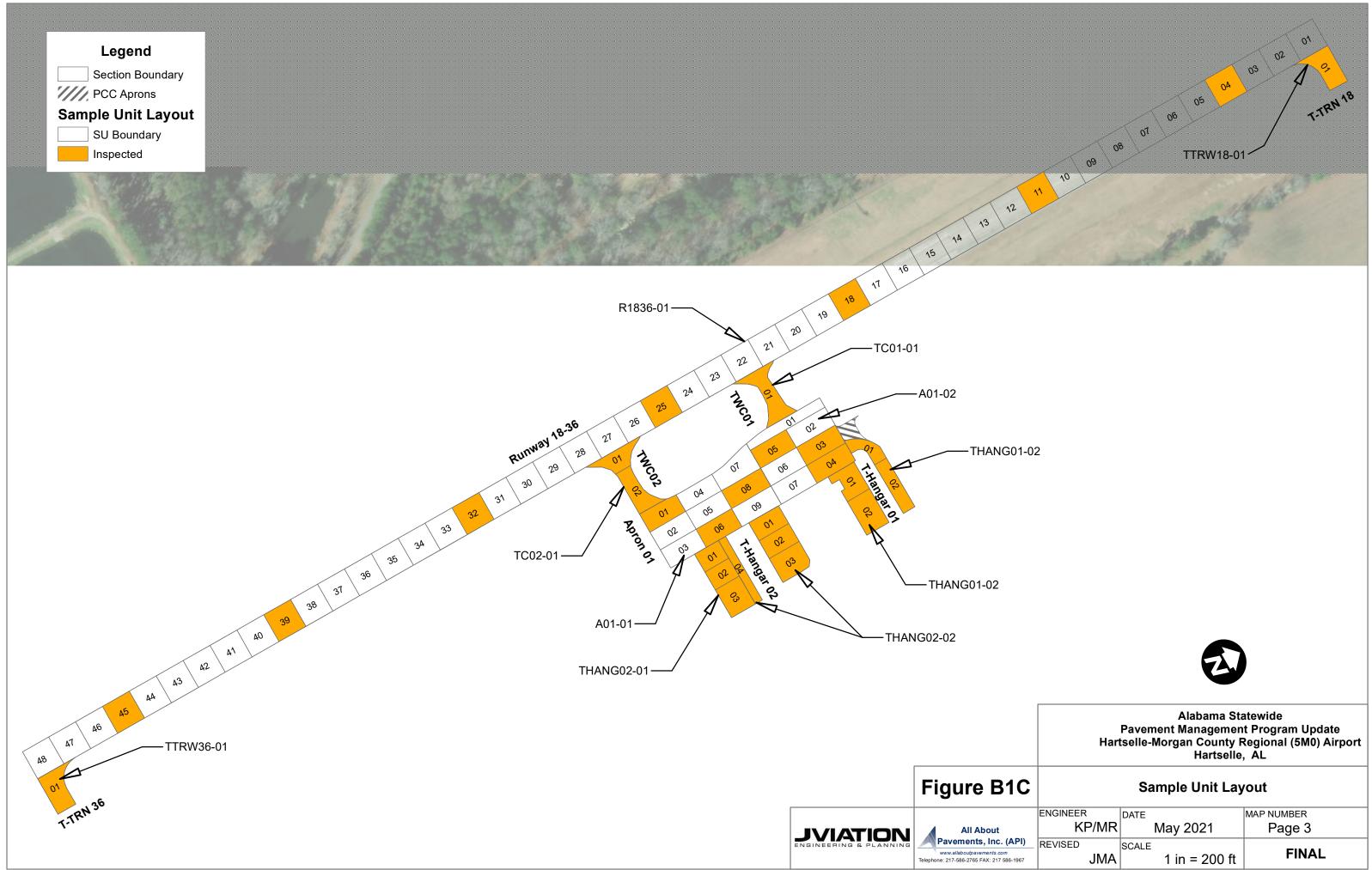
¹ P = Primary pavement, S = Secondary pavement, T = Tertiary pavement

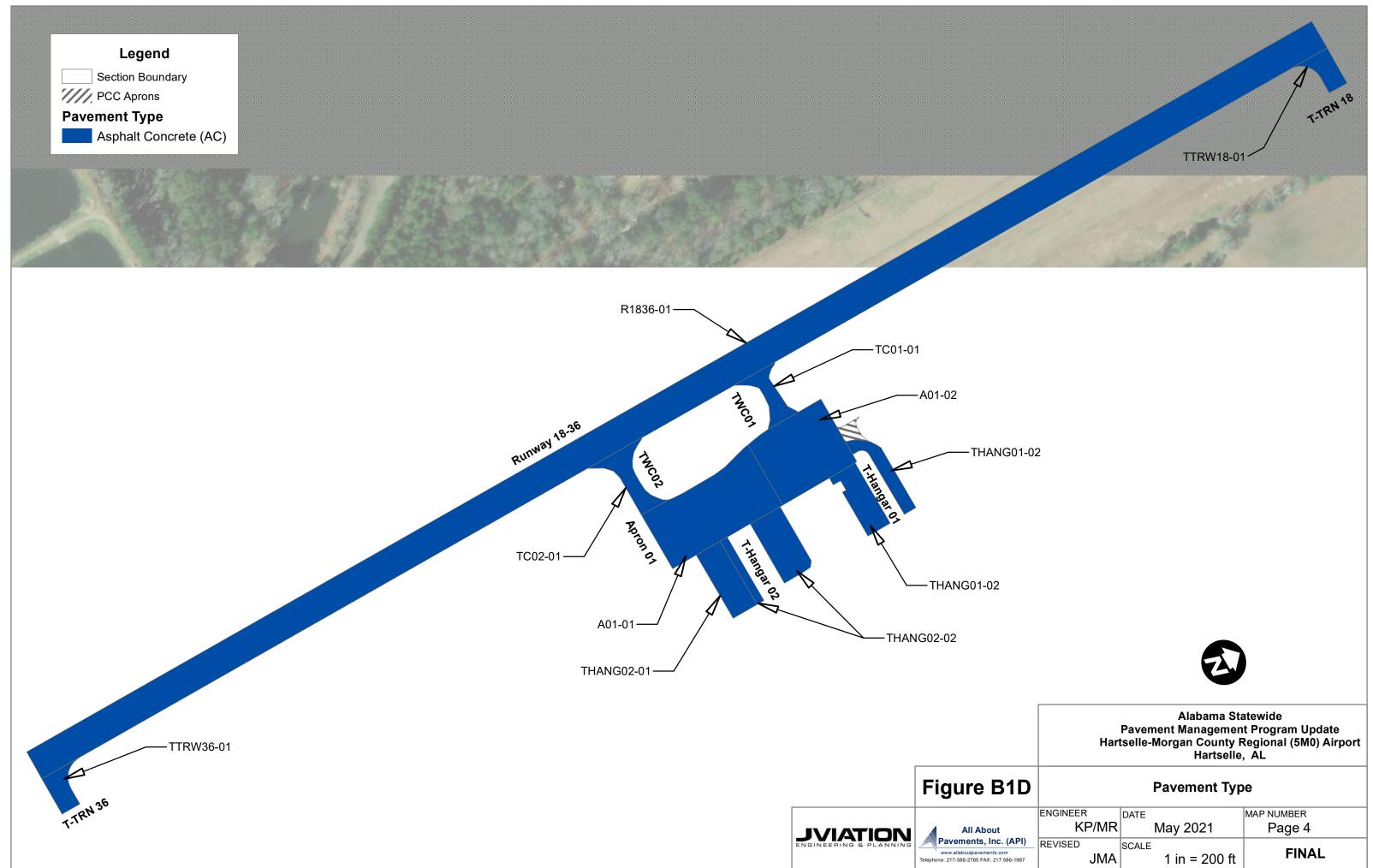

² LCD = Last construction date. The date of the last major pavement rehabilitation (e.g. AC overlay)

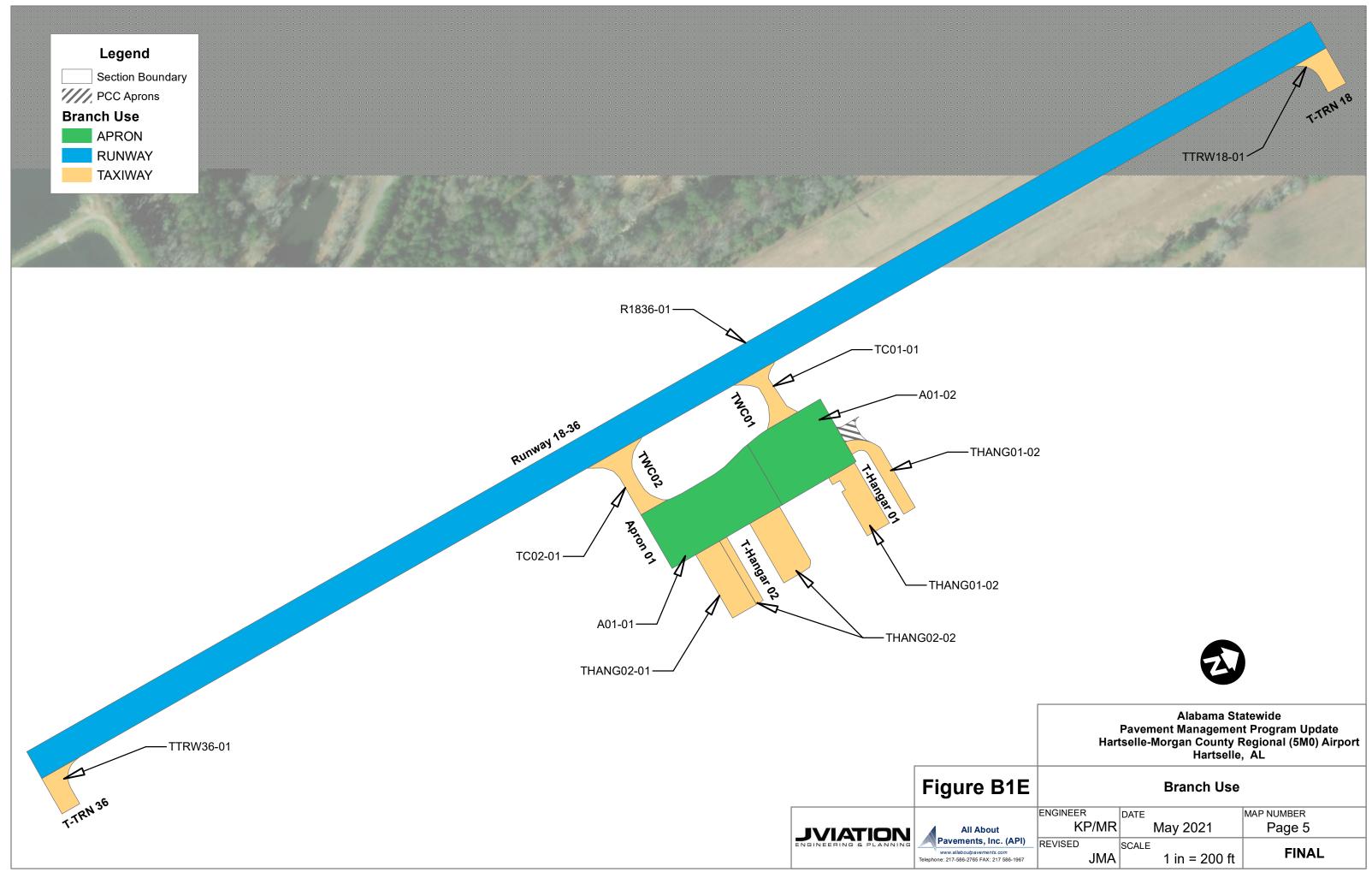
³ AC = Asphalt Cement Concrete, AAC = Aphalt Overlay AC, PCC = Portland cement Concrete, APC = Asphalt Overlay PCC

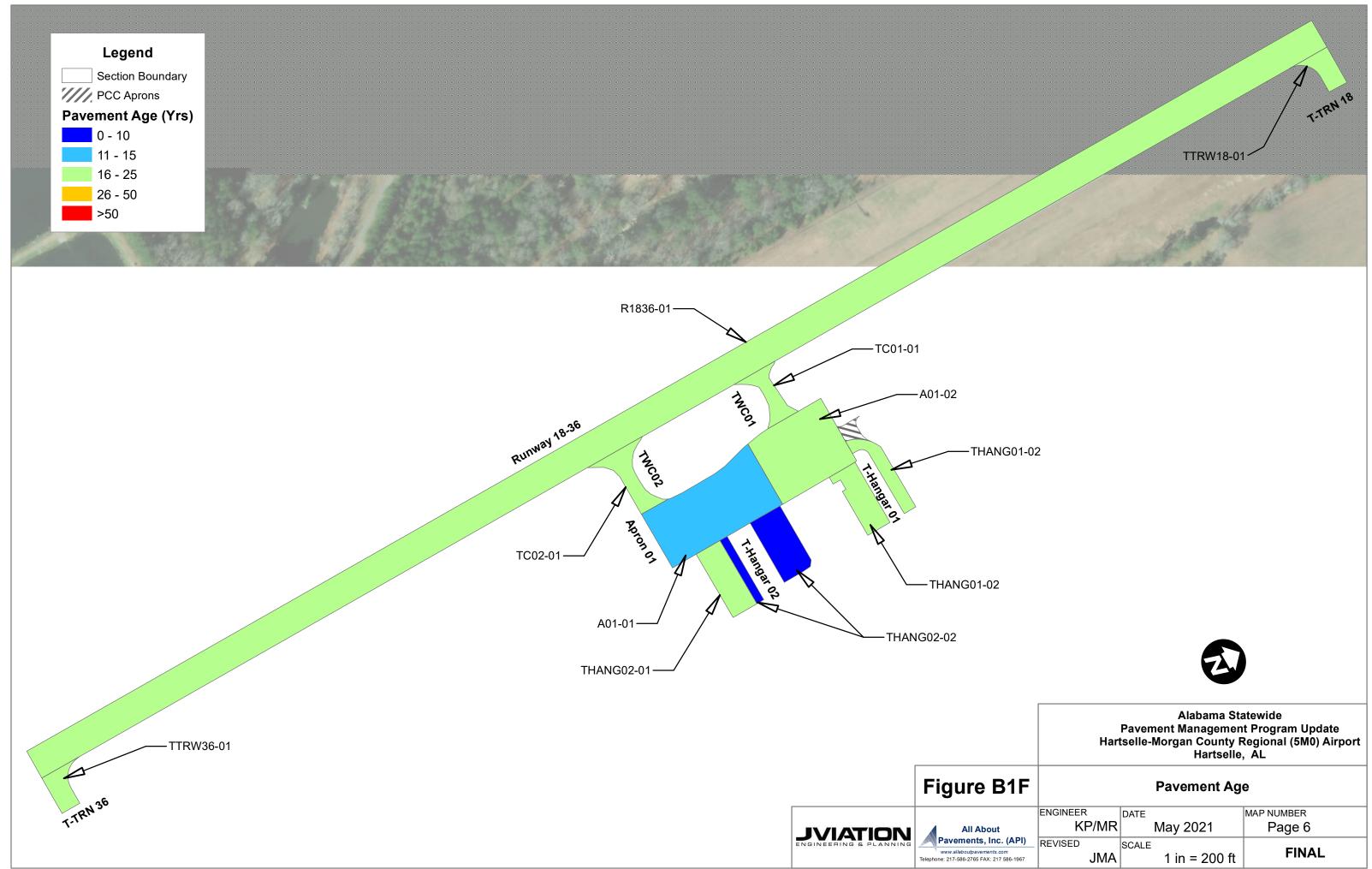

APPENDIX B

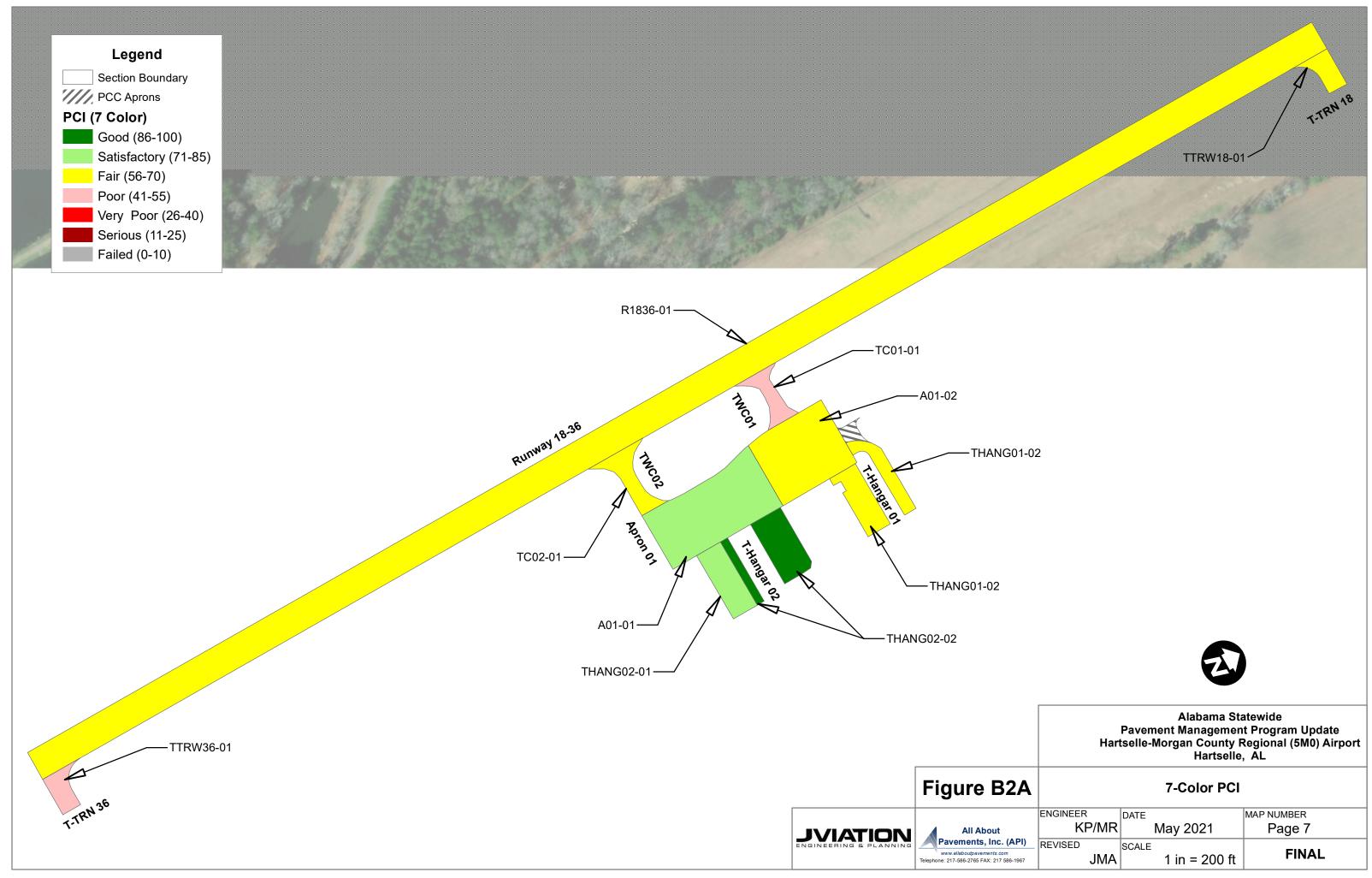
PMP Maps

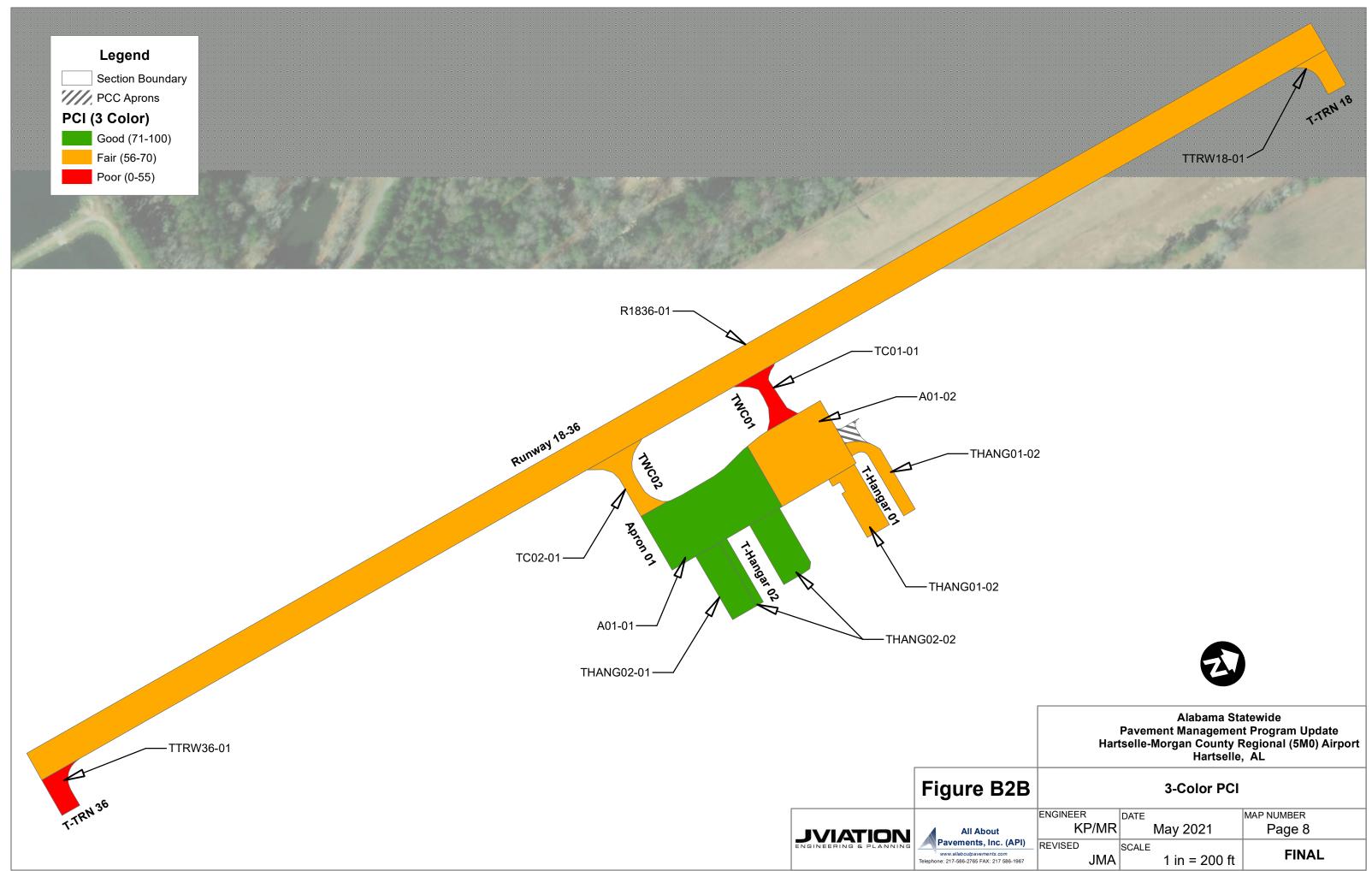

B1: Inventory Maps **B1A:** Branch Identification B1B: Section Identification B1C: Sample Unit Layout B1D: Pavement Type B1E: Branch Use B1F: Pavement Age **B2: Surface Condition Maps** B2A: 7-Color PCI B2B: 3-Color PCI B2C: FOD Rating **B2D: Survey Photo Locations** B3: Pavement Capital Improvement Plan (PCIP) Maps B3A: 2027 Forecasted PCI without PCIP B3B: M&R Needs **B3C: PCIP Recommendations**

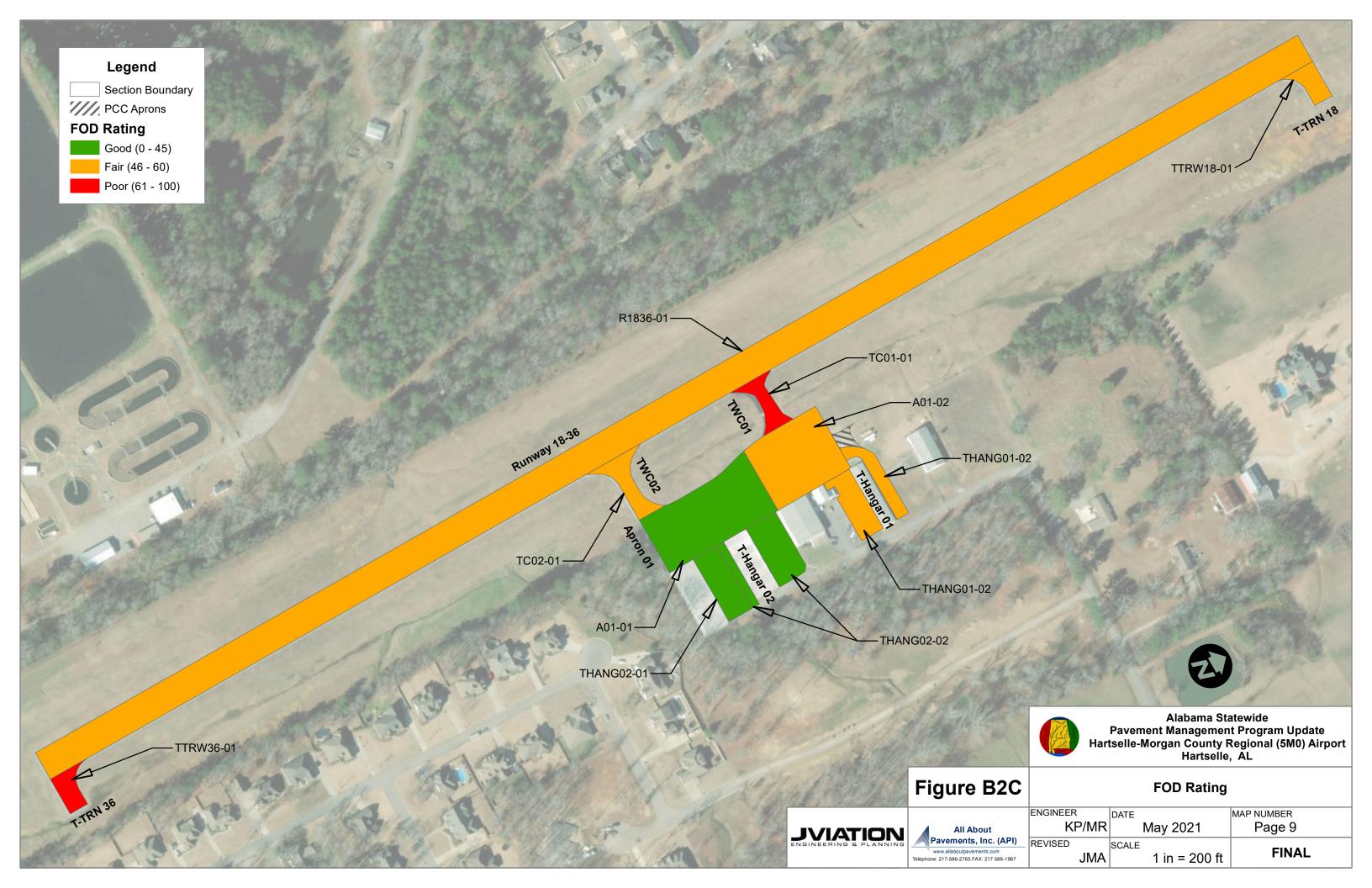

Α	Branch Identification					
	engineer KP/MR	DATE May 2021	MAP NUMBER Page 1			
API) -1967	REVISED JMA	scale 1 in = 200 ft	FINAL			

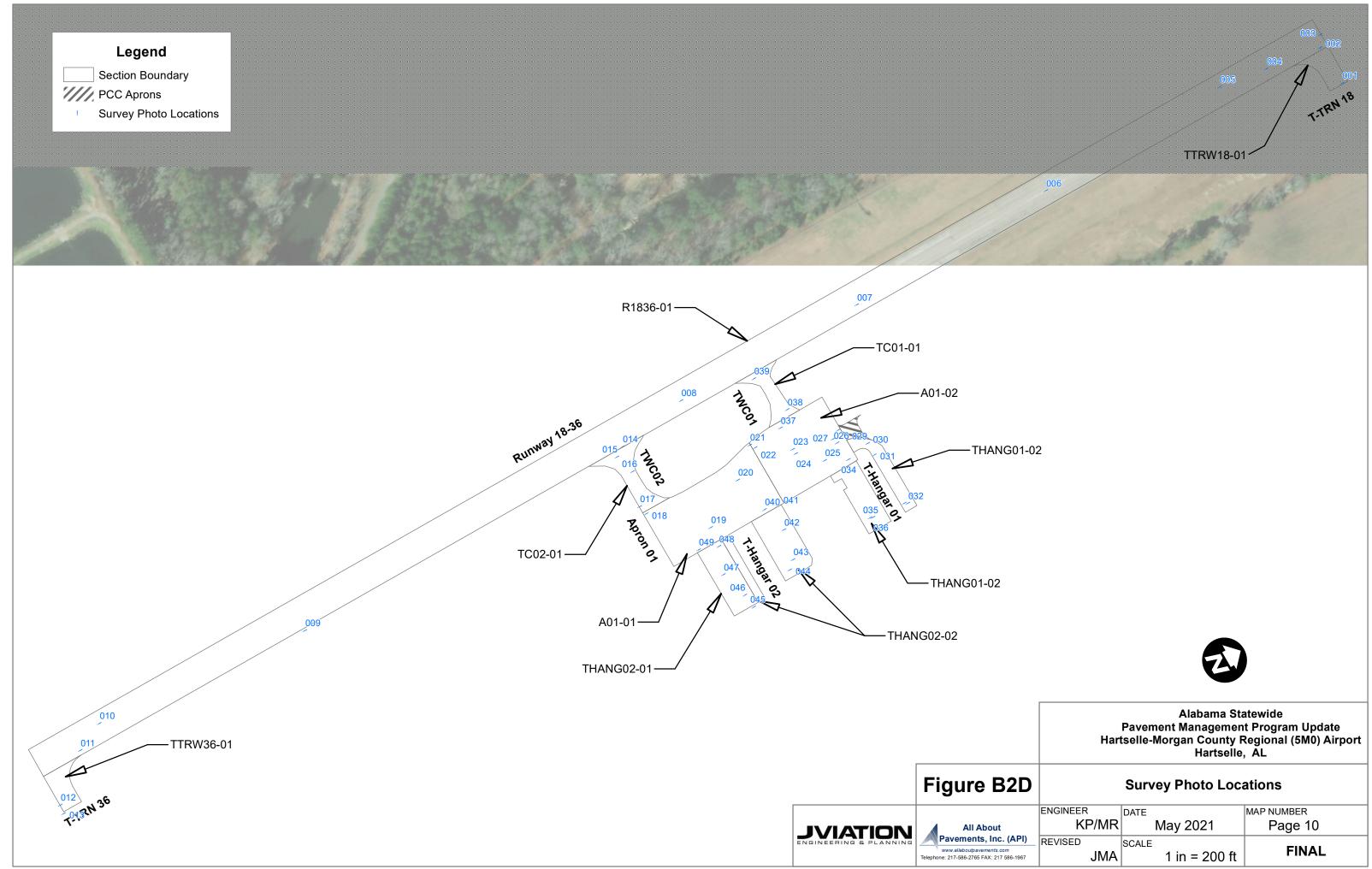

B	Section Identification				
	engineer KP/MR	date May 2021	MAP NUMBER Page 2		
API) 1967	REVISED JMA	scale 1 in = 200 ft	FINAL		


IC	Sample Unit Layout					
	engineer KP/MR	DATE May 2021	MAP NUMBER Page 3			
API) -1967	REVISED JMA	scale 1 in = 200 ft	FINAL			

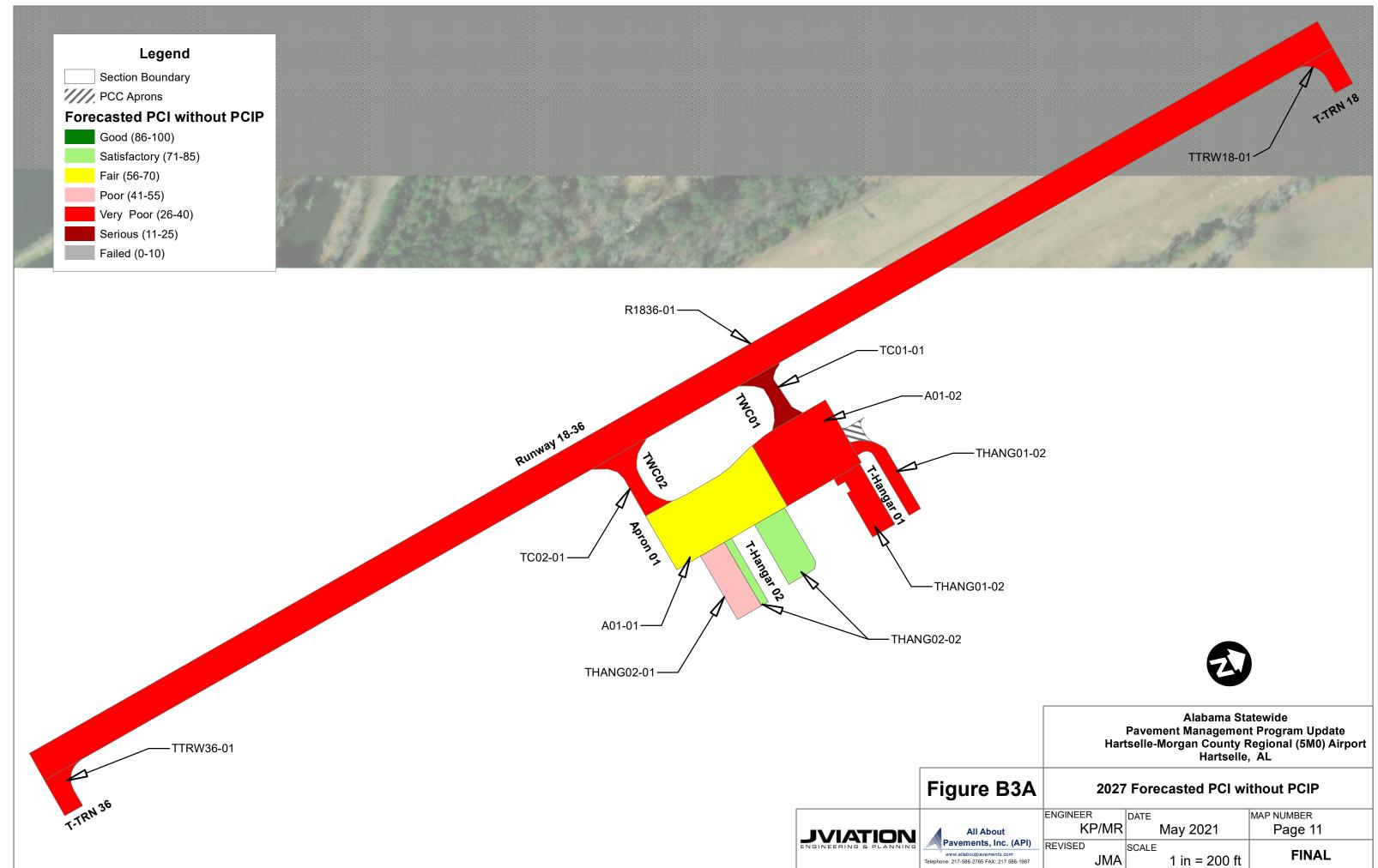

	Hartselle, ĂL					
ID	Pavement Type					
	ENGINEER	DATE	MAP NUMBER			
	KP/MR	May 2021	Page 4			
API)	REVISED	SCALE				
6-1967	JMA	1 in = 200 ft	FINAL			


	Hartselle, AL		
IE	Branch Use		
	ENGINEER	DATE	MAP NUMBER
	KP/MR	May 2021	Page 5
API)	REVISED	SCALE	
-1967	JMA	1 in = 200 ft	FINAL

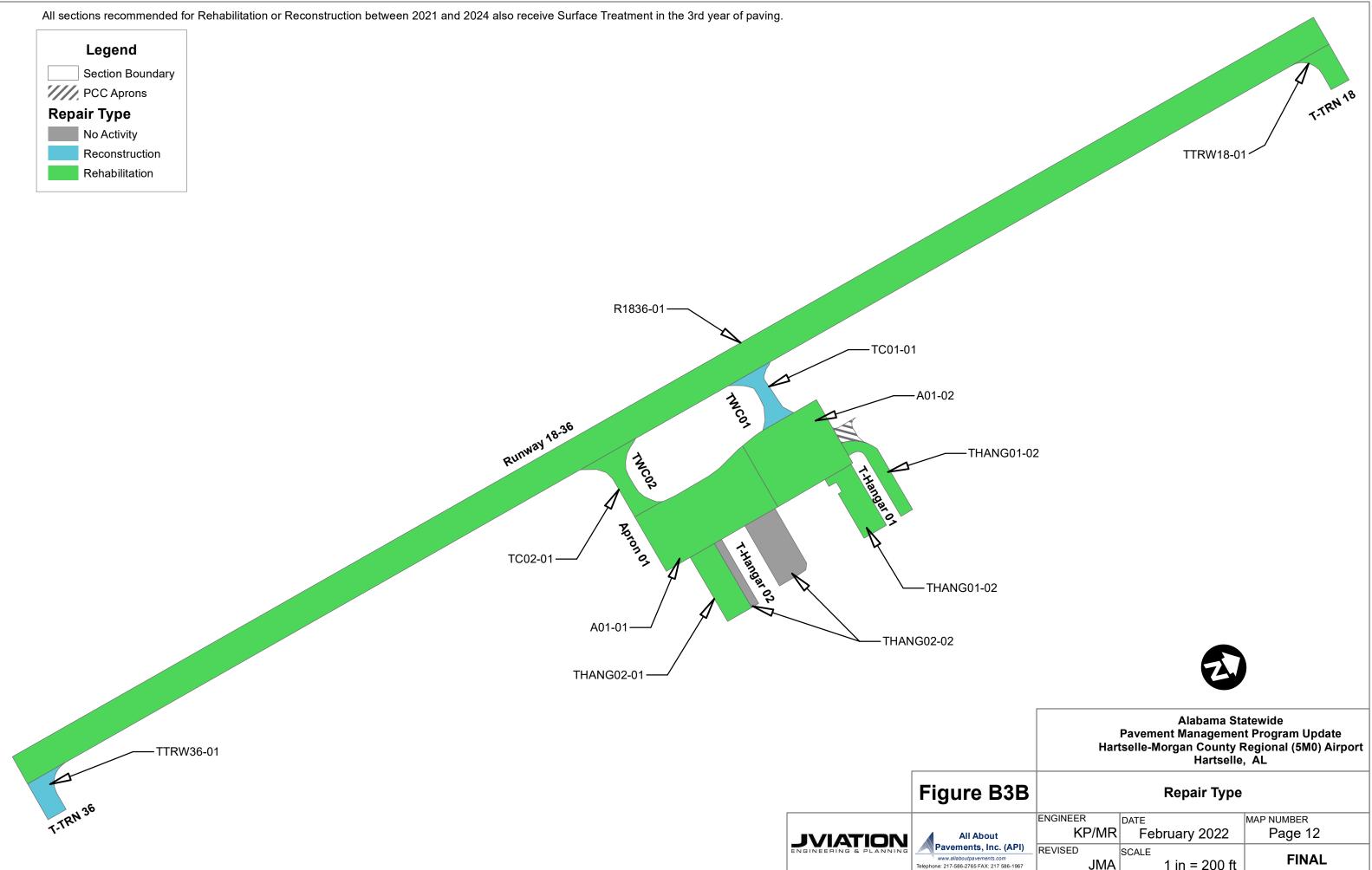

	Haitseile, AL		
1F		Pavement Ag	9
	ENGINEER	DATE	MAP NUMBER
	KP/MR	May 2021	Page 6
API)	REVISED	SCALE	
6-1967	JMA	1 in = 200 ft	FINAL



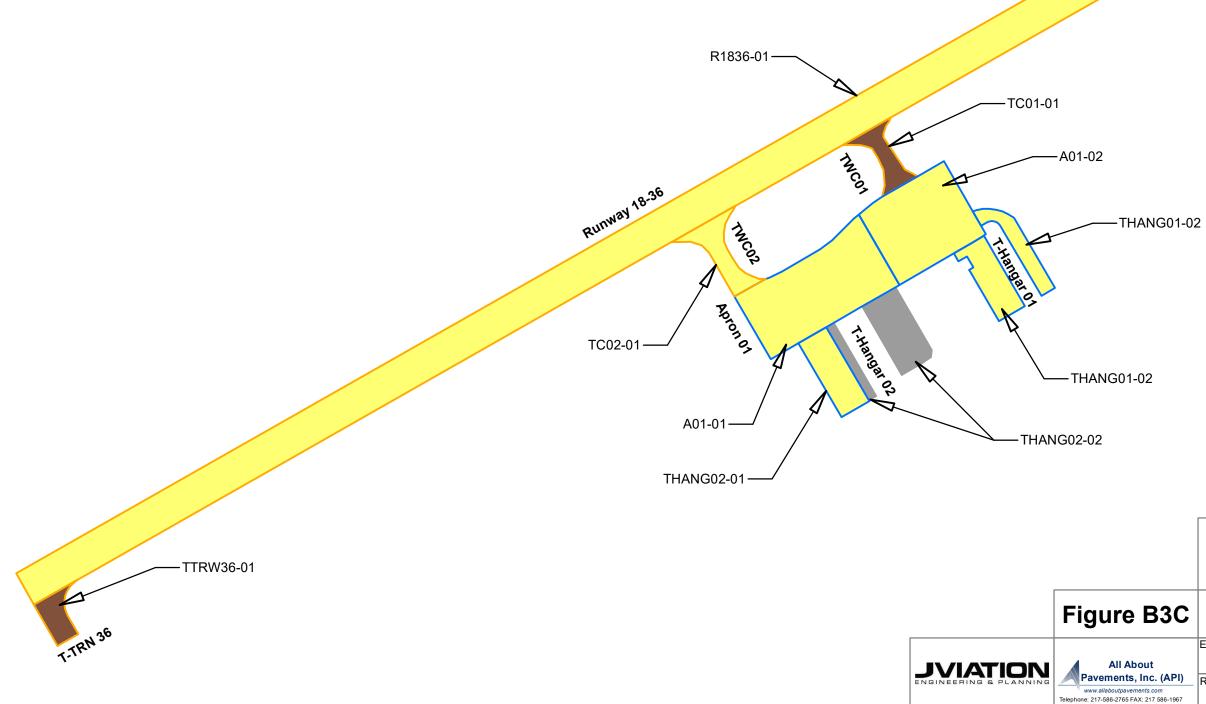
	Hartselle, AL		
Α		7-Color PCI	
	ENGINEER	DATE	MAP NUMBER
	KP/MR	May 2021	Page 7
PI)	REVISED	SCALE	=11141
967	JMA	1 in = 200 ft	FINAL

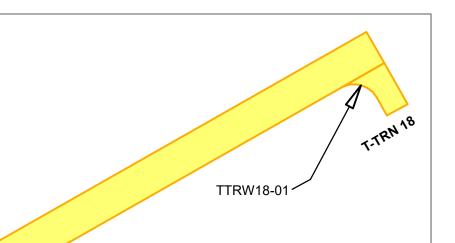


В	3-Color PCI		
	ENGINEER	DATE	MAP NUMBER
	KP/MR	May 2021	Page 8
PI)	REVISED	SCALE	
1967	JMA	1 in = 200 ft	FINAL



2D	Survey Photo Locations		
	ENGINEER KP/MR	date May 2021	MAP NUMBER Page 10
-1967	REVISED JMA	scale 1 in = 200 ft	FINAL


Α	2027 Forecasted PCI without PCIP		
	ENGINEER	DATE	MAP NUMBER
	KP/MR	May 2021	Page 11
PI)	REVISED	SCALE	
967	JMA	1 in = 200 ft	FINAL



	Hartselle, AL		
BB	Repair Type		
	ENGINEER	DATE	MAP NUMBER
	KP/MR	February 2022	Page 12
API)	REVISED	SCALE	
-1967	JMA	1 in = 200 ft	FINAL

All sections recommended for Mill & AC Overlay or AC Reconstruction between 2021 and 2024 also receive Surface Treatment in the 3rd year of paving

Alabama Statewide Pavement Management Program Update Hartselle-Morgan County Regional (5M0) Airport Hartselle, AL

BC	PCIP Recommendations		
	ENGINEER	B/ (1 E	MAP NUMBER
	KP/MR	February 2022	Page 13
API)	REVISED	SCALE	
-1967	JMA	1 in = 200 ft	FINAL

APPENDIX C

OVERVIEW OF PAVEMENT DISTRESSES

%5``**][Uef 7fUMb[f57**Ł

5``][UefVKU]b[[gUgif]YgcZ[HYWB5W]b[VKUgWigXVn3U][i YZ] i fYcZhY UglUHWBMPygiZUWk\YYPhg`YgDggUXglUb[g\]]\Ygi b%fk\YY`cUg' HY VKUgdical[UYJe hYgifZW]b][UmigUgif]YgcZdfUY VKUg' 52hffYDD7X HZZIVVCU]b[hYVKUgWb5WiZcfa]b[aUmgX%ggUdUb['Xxd]WghU7%j Ycd UdUMb?YgaV]b[WW9bk]fYcfhYg]bcZbUT][Uef" HYd]WgdfYYgghU5& ZMicd['cbhY`cd[YgigX'' 5``][UefVKU]b['cWikgcbm]bUfYghUifYg VWIXJe' fYDPXHZZIVCU]b[žgiWlgk\YY`dhg3UX[gWigXFXUaUcfgii WifUX]gYgg

Gj Yffig

- @dk ! a UXi dcZ/bZ\Uff]_Y\KV\gfi bbb['dfU'Y le XWchYfk]h bdy cf dbmUZk [bYf:\kbb\kjb] \KV\gf H Y\KV\gffybdigU'X'
- A Wiji a ?: ifft YFXj Yeda YdrcZ][\hL][Uef \KU\]b[]ble UdUhtbef bilkef_cZxKU\@hUiaUrbY][\hrigLTX:A Wiji a !@j YflmtJ][Uef \KU\]b[`]gXZjbX\riUkY !XZjbXdUhtbeZ]bYY\kibXljb[\KU\@k\YYU`d]W@ UfYgNifYrrh YX]bdUWf[ceXU[[fY] UY]bYf c\WVlkYbd]W@/
- < [[\?\\\\U00ecclfYg2XgchUfhYd7WgUfYkY`X22bXUbXgU7XUfhYY2(Yg'') GcaYc2hYd7WgaUfficWibXf1624WbXaUffWig2: C8'dc14bfU'

FYLFccHcbg

- @ck?BcUljcbžgifZUVgyUcfcjYfUnzffckgjYjhnžlgfygg
- A Wijia ! diffjU'cf Z``Xich dIWizcj Y Unicf f Wibelfi Wi
- <

& 6 WAD 157L

6 YYH [gufa cZyha beiga UffU'cbhYdj Ya Yrig fZWhUMUHUUGUg bri ['Ugj`]_YfZWH [gfZWhUig UmYWa Ygei [YgjWiff6 YYH] [gWigXyin Y Vgj YUaci bgcZughUffWYa YricfWgbhYa]I 'cf'ck!Ufjc]XWHYDicfVch'' =icWMgk\YbUghUff`ghYjc]XgcZhYa]I Xifb[\chkWhYUXhYbYdDYgcih che hYg fZWcZhYdj Ya YriGbWhYVYYH[dicVgg]gbcify YgVYXifb[WX kYhYžUghUficfWfk]``UWAai 'UYcbhYg fZW'

<u>Gj Yjljý</u>g Bc X(fYgcZgj Yjlmi fYX2)bX(6'YX)b['g ci 'XV/bcHXk\Yb]hjg Y Pbgj YYbci [\ le fYX Wg]XfYggUbW

<u>FYELFD: Mag</u> '8c beh.jbj / gbXVdthY**AghggXLfiU**\nitithth[\\\HibXic```gbX jbe hYLf1gUZNNXk]h VYAbj žfYa qj YhYY Vigga UhfjU/dNV

"6"cW7fUMb[f57L

6 cWVIUVgtfY|hfWHbWIXVIUVghUf¥j]WhYdj¥a¥hjHefWIH[i`UfgUfIX dWg'HYVcVgaUfifU[Y]bghYZica %in%Zcdie %Vin%Z2¥f6 cWVIUV]b[`]gWigXaUbmVngfb_UYcZhYUgkUhWfMUX[ghchcUXIggvJUfIX'HY cWiffYbWcZVcWVIUV]b[`igUnjb¥WPghUfhYUgkUh&g\UfXbXz][b]ZWBhtfi 6 cWVIUV]b[`bcfaUnicWikgcj¥UUt[Ydicdcff]cbcZhYdJ YaYhIfYIZViHk]``` ga¥jaYgcWifcbnjbhYbcHHZZWIYYZ

CY YHY

- @ck ! XZ/bXXmU(VghUifYUiacgh][\lingt]) YZ/Wigh[to Zff][bo/YWi
 Xa U YH C8i dHifjU''I bZ 'YXWU/g\U Y% [bWcf Ygga Ybk]/hZUX
 Z 'YXWU/g\U YZ 'Y [bgHgU/ifmWbAl]db/
- A Wia ? X%bX\in\K\\\\\@hUifYacXfUYngU`X%gaY: C8`dd\HjUž ib?``XXK\\\@hUifYUiacgi`][\hngU`%Z\ib\jYUa \Bk]Xh`[f\Uf hUb%{ jbWcf?``XXK\\\@hUifYUiacgi`][\hngU`%X\ib\jY?`Y`]b` ibgJj@X\\fin\b\Jjd>

FYLIFD: Wg

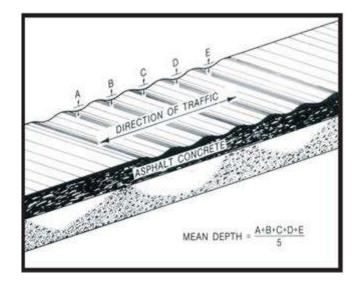
- @ck?BcUljcb/
- A Wita ? gU WU gutthni Yi j Yu leži WihW g f WU ch WigW f Zn UX.
 cj Y Un
- </

(" 7cffi [U]cbf57Ł

Description

Corrugation is a series of closely spaced ridges and valleys (ripples) occurring at fairly regular intervals, usually less than 5 feet (1.5 meters) along the pavement. The ridges are perpendicular to the traffic direction. Traffic action combined with an unstable pavement surface or base usually causes this type of distress.

Severity Levels


 7cffi [UjcbgUfYa]bcfUbXXcbclig][bj2]WblimU22Wid]XYei U]ImigyYa Ngi fYa Ybli

 @

 VijiYi]UVYckE!

7cffi [UjcbgUfYbcjjMUVYUXgj[bj4WbhnU2XNif]XYci UjhnigYYa NgjfYa Ybh VijiNjUVYckE'

7cfii [UjchgUfYNg] mbcljMXUXgj YYmVZNii jX/ei UjmigY/a Ng fYa Yih WijYjUV/ckE'

)" **8¥f¥gdbf57Ł**

8YfYgdogtfYcWjnXdjYaYhgfZWUfYg\Ujb[YyJUjdogg][\hmdxYhUb hcg/cZhYgfficibN[4] 'djYaYhffebaUmfbgUbWg?][\hNdfYgdogtfYhch hcfWU/YiB[i UhfUUjb2k\YbdbN[4] kUffVMUhgfVjfMUhľ UfYgViHAY XdfYgdogWbUgcW'cWhXk]hciHUjbVWig/cZgUjbgVMDXVnidbN[4] 'cZ kUff'8YfYgdogWbUyWigXXngNihaYhcZhYZibMIjcb'g]' cfWbVYVi]'h Xff4[VbgfiVjcb'8YfYgdogWig/fici[\bYgDN2k\Yb2]'YXk]h kUffcZ g/ZJVMHN2khZWiXXVig/m6cdUjb['cZUjfVfZfi

Gj Yffyg

- @ck ! SYfYgjcb\Wb\Yc\@fj YXcf`c\WPX\injt]bXlfYl@cb`ng][\hm UZNigdj Ya Yhf]Ab[`ci U]milbXaUn\Wi gY\nAfcdUbb[`cbYbf]U`cb` fi bkUrg'AU]ai a XXfh %# le %#3jbWZcf fi bkUrg?%&le %jbWZcf NI jkUrg` UXLificbg
- A Wia ! H YXifYglcbWbWcVglj WzacXifUYmUZNigdj Ya YiffAlt[ei UjhilbXWi gig\micdUjb['dchibjU'cbfi bkUrg'A U jai a Xifh %&le% jbWZffi bkUrg?//e &jbWgZffN jkUrgUXLilcbg

FYLIFD: Mg

- @ck?BcWjcb/
- A Mia ! GU dz d ff U d Z ~ M d W

*">¥6U467Ł

8YAAddb

>¥W&JnfcgdoWig&Xf_YbXlfV&dhYdjYaYhgf&Wk\YbVlhalbcigVbXf \LgVNbVifbXcfWfVdhNX~cWJnXXifbXlfV&aUnjUmJbXthidle Uddd laUYm¥&JbWf%a]~]aYhg!!

Gj¥]hi@j¥g

BcXI fYgcZgj YllmifYXZbX: ligg Zjylitie jbyWYhUrYiVidincdcbY dg

+"`>c]bhFYZNIjcb7fU<u>N</u>b[f57Ł

8¥g4jdjcb

H [g¾dígicWikigdomobdíj Ya Yig\Uj [d] UbUgh Ulicflif gi fZUWcj Y UD77 gU/ H [gWh] chilicYghdi [bW/XY YZ N]icb VICM[d] Zica Umich Y hudivcZ N@rf] 'YZ Wa YigW] [nXZ] a YgW] [nXZ gi W VICMgUY [gYXLgrd] [li X]bU UX10 gi YgY VICMg'>c]dY YZ N]icb VICM[d] [gWi gX a Ubminia cj Ya Yhizh YD77 gU/VIbMh ' hY57 gi fZUWVWi gYczh Ya U UX a c]gii fY WU[Yg'] ligb chicU fY UPX'< dk y Yz HIZI WiCM[d] 'a UniXi gY U YU_Xikb czh Y57 bM fh Y VICM2 fig 'Hb [bgU][d] UX : C8 ddYbHU '=Zh YdU Ya YhigZU[a YhXUd] UVICM2 fig 'Hb [bgU][d] UX gU YX 5 _ bck 'YLY czgU/X]a Yhgd gY bM h Y57 gi fZUWk]`` Ydle [XiHJizh h YgY VICMg'

Gj¥]hi@jYg

- 74UVg/UYdbm][/ligU]b[f]JhiYdbc: C8 ddfbHUFdbcgU]b[UXWbW

 7YXdbdi2~YX = 2bdi2~YZhYUUVg/UYUaYbk]Ab c2% [bWfl'

 a]~]a YMgrd~Ygg:]~YXWUVgUYcZUmk]AbZvi HbYf2~YfaUff[U]g]b

 a]~]a YMgrd~Ygg:]~YXWUVgUYcZUmk]AbZvi HbYf2~YfaUff[U]g]b
- A CbycZhYZE`ck]b[Wb34]cbgY]gg ff&MCVgUfyac3MUYngU 725g a Y: C8 cbYcZhYZE`ck]b[Wb34]cbgY]gg ff&MCVgUfyac3MUYngU 725g a Y: C8 cbYHJUEDSWbVYJhYZ `Y2cfbd/Z `Y2cZUnk]2h/f#Z `Y2MCVgUfybdi gU 72cfUfycbii][\hingU 72cfbd/Z `Y2cZUnk]2h/f#Z `Y2MCVgUfybdi gU 72cfUfycbii][\hingU 72cfUfycbii][\hingU 72ci IhYa Nb WCV k]2h [g] fNDfhUb%# [bWfl a]``]a YhgZcff(E`][\hfub%ca MCV]b[Y] [gg bNfhYVCWcfUfhYvbbfcZ]bHgNJb[VCVg
- 7fUAgtfYgj YYnigiD YXDX2[b]IY: C8 ddYb]ULUXWbWYJh YZ YXcfbd/ Z YXcZUnik]Xh"

,"@db[]hiXbUUbXHUbgjYgY7fUMb[157Ł

@df JhXHU UXHIDg YgYf@/ HEXICAGUY Ye hYdj Ya YHgWHY JbYcf `UYKkbXfWJdd'H Yna UnWW gXVm %LUdof mWngli WWXdj Jd `UYYcJdž&E gfJo_U YcZhY57 g fAXWX Ye \UXXbJb[`cZhYUgh Už`cf' HLFZNUj YVICW W gXVmMCAgVIMA hYg fAXWM fgY HUg YgYMCAgN PhXUM gghY dj Ya YhthensyWUfmle hYdj Ya YHWHYf JbYcf`UYKkbXffWJdbZbXaUnW W gXVmJPag&cf' HggNPXLVcj Y'H YgYhnNgcZMCAgUfYbdi g UmcUX fYUNX

Gj Yffig

- A Wijia ? dbYcZhYZE "dk]b[WbW]dcgY]dgg '% MC//gUYacXYUYm gU YXUXWb WYhYZ "YXcfibZ" YXcZUmk]Xh/&Z "YXWC//gUYbdi gU YXcf dbm][\hngU YXvi HhYZ "Yf]g]bi bgHgC//ifmMbM]db/' Ei b Z "YXWC//gUYbdigU YXcf dbm][\hngU YXvi HhYWC//k]Xh Y WM2 % [bW cf(E]] \hfUbXca \KW]b[Y] dggbMfhYWC//cfUhYWbMcZhY JbYgVJb[\KW/g

FYLIFD: Mg

- @dk?BcWkb/
- A YAjia ? gau Valuy g

9" C] Cd ``U YB57Ł

C]`g]``U Y|ghYXYhfcfUjcbcfg7Abjb[`cZhYdj Ya Yhig f4UWWi gXVnhY g]``jb[`cZc]`24 Y2cfchYfg;`j Yhg'

Cj Yllyg Bc X (fYgcZgj YllmifYXZbX'=hgg Zj\Nhhie [byWYhUic]`g]``U Y Y]gg

FYLFD: Wg

- 8cbch]b[/
- DiffUcfZ ~ Xch diw

%' **DIRMP[** '

FYLJfdlWJb[U5XiJ}]mWHdlWJb[]gWbgXYXUXZWHYYUfXYgcZ\dkkY]h dMZfagcfklgWbgfiWX

Gy Yffyg

- @ck?jb[ccXWbAllcbUXjgdbZfa]b[gllgCWbf]m
- A Wia ! jega \k\UXHjcfUXUXUXUXUğf|\b e Ujmic ga Yi Hb/a
- <[[\!]g\UXn3NAjcfUAXUXUZN\gf]3[b] `ei U]mg[[b]4\U21mef\lg`\][\`
 : C8`dePHHU'
 </pre>

FYLIfedicbg

- @ck?BcW/cb/
- A Wia ? gu WU gr fulf h Y gu ge gib h Y du wef ful uwh Y du w

:][ifY74.~5g\UhDKV[b["

% Dc]g W5[[f Y Ite f57]

8¥4Add

5[[f](UYdc]g)b[[gWi gXVnfYhUYXhUJVWidf]Wijdg'Dc]g YXL[[f](UY]g dYgHtk\YbWgYYLia [bUjdbcZUdij Ya Yh'fy UghUthYddf]dbcZU[[f](UY YLYMYb[UKj YhYUgl\UfigYhYj Yniga U`cfhYYUfYbciti [\`cfU[i`Uf U[f](UYdff]Wiglcdicj [XX[ccXg]XYg]gUbW'91 [gYbWcZh]gludYcZXjgYigg]g Ugc]bYWPXk\YbhYti a VfcbUg [XYg]gUbWfU[b[Hgig`ck`cf\UgXicdhX g][bJWHinaica dYj]ci gfU[b[g'

Gj¥]hi@jYg

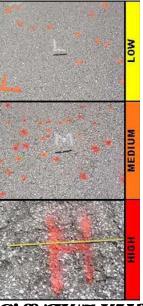
BcX(fYgcZgj Y]mifYX2[bXi<ckj Y2hYX(fYcZdc]g]b[gci XV g[b]4WhiVZfY[h]g]bWXX[bhYWbA]ljcbgijj YnbXt0PX1gUX2W

%# FUj Y]b[f57Ł

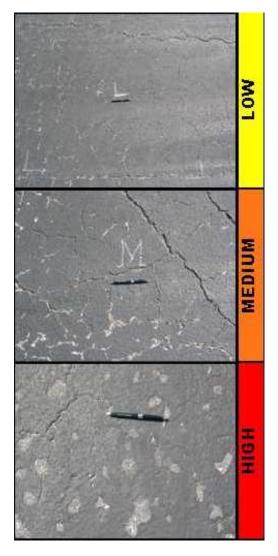
872blicb

FUY]b[]ehYx[ecx]b[cZwbfgyU[fY UYdff]WgZica hYdj Ya Yhig fZW'

81bg/A]l GjY[hi@jYg'


5gi gX\YjbžWugYu[[A]UYAZegle dYXa]bUHWugYu[[A]UYghQcZhY Ug\Uha]1"5[[A]UYWgYgYgAZflek\YbacAYhUbdYUXc]bb[WugYu[[A]UY d]Wy[ga]ggb["=Z]bXciViUciHUgjYf]mïyjYZhfYYfYfYgHUjjYufYgZ%geiUfY nHXff%geiUfYaYHENUWg.ci XVYYUa]bXUbXhYbiaWfcZa]ggb[WufgY U[[A]UYdff]WgWiHYX

Wik Yib) USAS 'f & A]@b[U[fY] UYW gHg]g Y@hUb&dWith:ZhY Yi Ua]bXgei UYHEXigei UYA YHELFU =b`ck @j Y]hiiU Y]b[ZhYY]g]liiYcf bc: C8`dcHiH]U'


A Váji a 'gj Yfhnic Widgi ZUbnich Yozh Yg/Vib Miljebg Yigh flikish Ugsi Uf Ynif X figei Uf a Ynff Yf YgHUjj YUF HZh Yhi a Vf cZWUg YU [fri Uf Yelffl/Wiga]ggh [A gylik Yb & UbX(\$' file A lggh [U[fri Uf YW gf Ng lg Vilk Yb & UbX % chf Whitz h YY Ua Jb Xegsi Uf Ynif Xiglei Uf Ya Yhft I fri U'r Wig a Yi a 'gj Yfhniftj Y h [Zh YY]g ga Y: C8 'd filf HU'

< [[\`gj Y]micWidg[ZUmicbYcZhYg/Vib3]]cbgY] [da f1&=bUgei UfYnffX figei UfYa YhffYfYgHiUj YUfYghYbi a VfcZWiUgYU[f1] UYdIf][Wiga]gg]b[` [gcj Yf(\$' f1&A [gg]b[U[f1] UYWigYg]ggacfYhUb%cdfWHicZhYYI Ia]bXX gei UfYnffXifjei UfYa YhfFIfYU=b\][\`gj Y]mifU Y]b[ZhYY]gg][b]ZWHi C8` dcHiHJU'

Bchy h]glgUblk XldfyggbWh Y889+ g fj Ym

GiffiiGU#7cUHfGY89bg/A]I GyYfhi@yYg

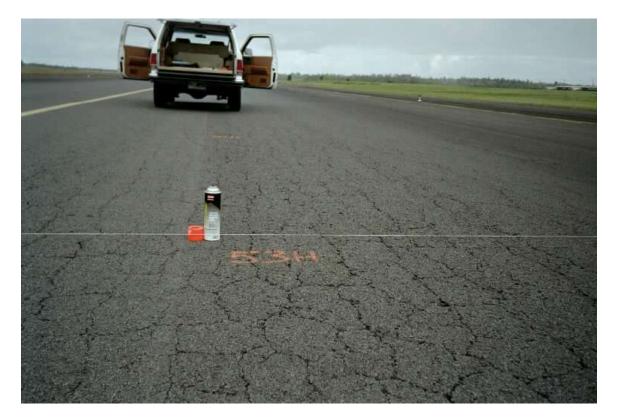
- entry with the second s
- A filth YguXXIfUgVik Yb%bX%dfVififite.bhYugycZwUlifk\Yy dlinfbWiWjb[\UgXjYcdXzhYWUygIfY%f]bWfl'aa4k]XYcf[fNhf'

D:fci g; f]Vijcb'7ci fgYGjY]m@jYg

=bU%geiUYZcdff#%geiUYaYM£fYfYgHUjjYgladY2hYbiaWfcZ @ U[fYUYd]Wga]gd[]gWkYb) UX&UXtfhYbiaWfcZa]gdb[' U[fyUyWgYgXygbdhIWX% -bU%gei UfYZcdff#%gei UfYa YMEfYIY@HUfj YgladYzhYbi a WfcZ A U[fuudwga]gdb['gvukwb&dbx(subxicfhybiavfcZa]gdb[' U[fyUywange]fyUrfhUsailacygbdalWaxa dawlazhYUyU =bU%gei UfYZcdfft#%5gei UfYa YhftfYffQHUJj Yglad Yzh Ybi a WfcZ U[fYUYdWga]gdd [gcjY(SUMChYbiaWrcZa]gdd U[fYUYWgMg < g funthus division zhyunu EDIUM Z

C-15

%" Filip 157Ł


5 fi HgUg fAWXXfYgdo JohYk\W'dh/\dxY YZJoa Umjog bWgfi lgtfY bdfMU/Ydoni2hfUtUbU žk\bhYk\W'dhgtfYZ "XkJh kUM" Uj Ya Yh i d JZia UneWifUdi hYgXgcZhYfi H'Fi Hjd[gYagZica Udha UbYhWZfa Ujdo JoUneZhYdj Ya Yhfunged g V[fUXzi g UmWigXXinMbgc]XUjdod "UhfU a cj Ya YhcZhYa UhfjUgXi Yle 1624WdVg" G[[bj4Whifi Hjd] Wo "UXle a Ucf gli WifUZ] i fYcZhYdj Ya Yhi

GYYHYHYHYHY

- @ck?Yghtb jbWjbXth/
- A YAjia ? Wik Yb UX%/bW/bX/ch/

FYLFcdlcbg

- @ck?BcW/cb/
- A YAjia ! dlwubXefg Yfum

: **][ifY7**'. "57**Fillb**["

%''G]ddL[Y7fU<u>M</u>b[H57Ł

G]dH[Y\KQGIfY\KQYFHcf\UZaccbgUhX\KQ\g\U]b[HccYbYgdc]hPXIkUm from the direction of traffic. They are produced when braking or turning wheels cause the dJYaYHg fZWMcg]XYUXXXFa''H]gi g UmcWikgk\YbhYf]gUck!gfYf[h` g fZWa]I cfcbcf VdXVIkYbhYg fZWUXXbY hUff cZdJ YaYHgfi VifY'

GYTHY No degrees of severity are defined. It is sufficient to indicate that a slippage

FYLFD: Mg

- 8cbch]b[/
- Diffuct 2 ** Xch diw

:][ifY7% G]dd[Y7fU<u>A</u>b["

%" **GkY]b[157**Ł

8¥4Add

5 gkY [gWufUMifnXVinibi dkUXVi [YbhYdij Ya YHQg f2UW 5 gkY a tin cWifg Uthnij YUga U UfUcf tgU di Yž[fUXi U ktj Y'9]hY hufvcZgkY WbW UWa db]XXing f2UWufUQh[''5 gkY [gi g UmWigXVinikg]Uljcb]bhY g V[fUXcf VingkY]b[gc]žXi hUga U gkY WbUgc cWif dbhYg f2UVcZtbUgkUh cj Yf thibj YD77HgUYg TrZUVck! i d]bhYD77 gW'

Gj¥]hi@jYg

(kY]gVfYnji]gVYUX\lgUa]bcf ¥ZNikbhYdlj Ya YiHgAJXYei U]milg
XNfa]bXUfhYbcfa UU[AUZigNXZcfhYdlj Ya YiHgAJkbi bXf
VibgXfU[cb'fRck!gj Y]milkY ga UnbchUkUrgVYcV@fj UVZvi lfhYf
Y]gYbWVbVYVbJfa XXvhHji]b[Uj X]VVcj YfhYgAU[cbUfhYbcfa U' UfvlZigNXC5bi dkUXUWYfU[cbk]``cWif [ZhY4kY [gdY@bBL'

 CkY WbVYcQ9fj Xxk]hci bXZ4W/mibX\UgUg[[bZWbhiZ2WicbhY

 A
 dj Ya YbByf[XYci U][migXNfa]bXUfhYbcfa UUjfWZigNXZfhYdlj Ya Ybh

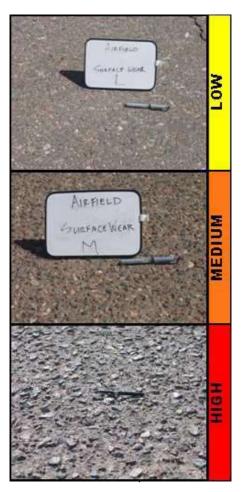
 gNijcbi bXf WbgXhUjcb'

CkY WbWfYDY nick@fj XXUX@j YYnUZXN@hYdj Ya Yh@fjXYei UjhnUfhY bcfaUUjfAlZigMXZcfhYdj Ya Yh@Njcbi b%fWbgXMUjcb'

%"**K XIA Y jb [157**Ł

8Y4Add

HYk¥lfb[UkumzhYUgdUh¥b¥fU¥ZbYU[f¥]UYaUhJ Zca hYdj¥a¥h gifZVV

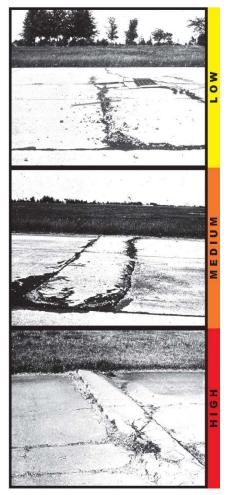

Gj¥]hi@jYg

5gl/Uig fZWW jbbb legdkg bgzZ jb k/jWaUnYUWYUXVm VaUWW Mjbbg @ggg hYZbYU fr UYaUij jgbd MUYUXaUnY

- Www.adbjYXVmiDybj cZhYtysVthWcd* 9%,YgcZhYWu69/U[fYUhgtfY W]bbbl te WYLdcgXffigghU5%\$]bWgcf%aaE UjYaYhaUmY fYUjjYmbik flybik Uj* adthgc XE
- @cggcZdbYU[[fY[UYaU0]]gbdjWUVYUXXX_YgcZWU9YU[fY[UY\\j YVbb'

 A
 YdcgXidle %# k]Xh idZhYcd[YgjgXYcZhYWU9YU[fY[UYXiY]ehYcgg

 CZ4bYU[[fY[UYaU0]]"
- 9XYgcZWUBYU[fYUY/UYWbYdcgX[fYUYfhUb%#k]XhikZhYd[Ygh < gXLcZhYWUBYU[fYUYfHYY]gWbgXfUYYcggcZ4bYU[fYUYaUb] "WAL leddYbJUcfgaYcggcZWUBYU[fYUY"


%" 6°ck!I dfD77Ł

8YaAdd

6 dd de Wiffb\dik Yh Yži e Unifi Lifthe Yg Vil Wef 'e Hih Uighelk XY Yoi [\le dha Jih dhe do'nh Yvd MiYg Ug'H Yhe Zj Vilik]Ah [gi e Um Wig Xxin b fill doe Zj ble dd'ge VYa UiffUg ble h Y'e Hig UW'K \ Yo Y dhe do WheifY [Y Yhei [\dYgi fizu e W]n Xi dk UXa ej Ya Yirzh Yg U Xi Yg fi W]b Eefe Uiffb [k]``e Wiffbh Yj [Vjb Imezh Y'e bi6 dd e Wb Ug e Wiff th i Jj]m Mg UXXU b U Yb Yg'H [g m Yez Xi dh Yz Me G'e di Wb Ug e Wiff th i Jj]m Mg UXXU b U Yb Yg'H [g m Yez Xi dh Yz Me G'e di Uf Y D'yz Xi f]a a Yi U'm XWi g Yez Yi Yi U Yez Hiff th U I U Xz ffiedbid ''

Gj¥]hi@jYg

- 6i Wjb[`cf`g`UMfb[`\lgbchfYbXYXhYdlj`YaYbhjbcdhUjj`YzUXcbmUg][\h @ Uaci bhcZici [\bYggY]]gg
- A Gi W/b['cfg'Uhf|b[\UgbdifV&YALj Ya YhibodhUjj Ya'i hUg[b]4Whi Ua ci bhcZici [\b¥gyY]]dg'
- < 6i W]b[`cf`g`UllAfb[\UgfYbXAfXhYdlj Ya Ybf]bcdAUJj Y`

%" 7cfb¥f6f¥U_gfD77Ł

5 WhYVYU [gUVIU/hUjHYgVIghY'c]dgUUXgNW YghUbcfYei Ule dX \UZhYgUYYi [h cbVch gXgga Yg fXAca hYWDYcZhYgUV: cfY UadYzU gU/k]h Xja YgjchgcZ& Vice ZYFhUh UgUVICV/jHYgVIji [hY'c]H) ZYFAca ' hYWDY cbchYgX/UX% ZYFcbhYchYfgX/gbchWbgXfXUWDFVYU/]fig UXU cbUVIU/ < ck y YzUVIU/hUjHYgVIg+ ZYFcbchYgX/UX%ZYFcbhY chY[gVbgXfXUWDFVYU]' 5 WDYVYU XZDGAca UWDFgU [bhUfhY WU/Y PbYg YIJW nhfci [\ hYYHJfYgU/h]Ubygk\]YUWDFgU [bhUfhY WU/Y PbYg YIJW nhfci [\ hYYHJfYgU/h]Ubygk\]YUWDFgU [bhQNjg hY'c]H1HbUj Y'@CXfYNJJjcbWa VJDXkJh ~cgjcZg cbcHHDXMFJd[gJYgJg i g UnWi gygVdbfVYUg'

Gy Yffyg

- @ck? 77UW\UgyhYbc'gUJb['cfa]bcfgUJb[ibcZfy[]bcVWWAbUY flCSFdPHJUE=Zbcbfilled, it has a mean width less than approximately 1#' inch (3 millimeters); a filled crack can be of any width, but the filler material aigity[bglgCUfiniteSH]cb'H YUFUVWkYbh Yufbf Vfu_UbxhY 'clbglgbcHWWXX
- A Xi a ? One of the following conditions exists: (1) filled or non?filled cfUV/g acXfUY nigU YXi ca Y: C8 ccPi HU/fill Lbcbf filled crack has a mean width between 1/8 inch (3 millimeters) and 1 inch (25 millimeters); (3) a filled crack is not spalled or only lightly spalled, but the filler is in unsatisfactory
 VAXI coefficient of the filler is in unsatisfactory
- < [[\?] One of the following conditions exists: (1) filled or non!filled crack is severely spalled, causing definite FOD potential; (2) a non!filled crack hagU a Nbk]>h [funfhubuhici]a UYn?/[bwfl) `a]``]a Yngi2usujb[UjfY Xå [YchHiJJ/cfflifh YufJJ/kybh YufJJ/whb/YuJJ [bxh Yc]bgig gj Yymi4UyxX

FYLFccHcbg

- @dk?BcWijdbicf@UViWig
- A Wija ? gu Willy

Xch dlw

: **][ifY7'%:`D77 7cfb}f6fYL**''

%" 7fUAg "@cb[]h XbUžHfUbg YgYUX8]U cbU fD77Ł

HYGVIUVEXIj]XYhYgU/]ble1kc'cf'hfYYd]WYgUXIfYi g'UmMi gXVnU WaVbU]cbcZcUXfYNJ]]cbzWf]b['gYgYgUXgf]b_U[YgNgyg''@ck'gj Yf]mi WUVgUfYbchMogXfYXaUcfgli WifUXgNgyg''A Wija'cf\][\'gy Yf]miMUVgUfY i g'Umkcf_]b['WUVgUXIfYWbgXfYXaUcfgli WifUXgNggg'

Gy Yffyg

- @ck ? %ii bf `YX\IU\&%*]bWle %*\$JbWk]XYk]h bc Zi `Hd `cf gU]b[/ & \UU\& `YghUb%*\$JbWk]XYk]h `ck `gj Y]mgU]b[/ cf `E7 `YX\IU\&cZ Umk]Xhžk]h Z]Yf chiZfa]b['JbUgHgU\kifnia Ub)f UXbc Zi `Hd `cf gU]b[/
- A Xiji a ! %ii bl2j "XXUUgiVik Yb%&le %jbWk]XYk]h bc2di 1jb['cf gU]b['cf & 2j "XXUUgicZUmk]Xh2di 1jb["YgjhUb%# "jbWcfa Xiji a ' gj YjlnigU]b[/

FYLFcdichg

- @dk?BcWijdbicfgWWikWjg
- A YAjia ! glU Villyg

: **[[ifY7'%: D77 HUg Ygy7{U<u>A</u>g**

&''8ifU]`]hn7fU<u>\</u>gfD77Ł

8¥34ddb

Si fU)]mid(V)b[[gWigX\mhY]bU]]micZhYWbXPYle k]hgibXhj]fcba YiU ZWifgi WUgAYYHYHUk WhYg'=h g UmidhNfgUgUdUmfbcZMUVgfi bb]b[parallel to a joint or linear crack. A dark coloring can usually be seen around the fine XfUY]mid(Vg'H [ghnYcZMUV]b['a Umiy YhiUmiXXle Xgbh] fU]cbcZhY WiXMPYk]h]b%le & Xifi \$\$51e* \$\$(a]`]a YhfgicZhY/c]bicf VdUV

Gj¥]hi@jYg

- ÍSÎ VIUAJE [gxzabxviniUf]bYVIUAgcWinffE [bU]a [hxufuczhygUz

 @ gi Wugdbycfikc WibfigerUde [cby/c]bii@]hiyefbc/kgbhi fUjdb/Ug

 cWinffyxBc: C8/df/HJU'
- f#£Í8Î VKU/b[\lgXj YcdXcj YUWbgXfUYl&ci bicZgUUflLk]A `]hiYcf

 bcXgbY[fU]cbcf: C8 dchHjU/cff#£Í8Î VKU/b[\lgcWhffX]bU]a]hX

 tfUcZhYgUžg Wlg]bdYcflkc WbMgcfUd['db%c]bžVi hd]WgffY

 a]ggb[UXXgbY[fU]cb\lgcWhffXCcaY: C8 dchHjU'
- Í SÎ VICU bị \LġXj YcdXcj Y LWbgXfUYLà ci bizZgULfILk]h' XgbY fUjdócz: CS'ddYbjU'

&%>cjbiGU SUa U YHD77Ł


>c]higU Xia [[Y]gUmMbN][cbžk\][WBU Yég]`cficV[é]e UMai `UY]bhY'c]bg cfUck `g] b]AWH[b] h[I]cbcZkUff" 5Wiai `U]cbcZ]bMadYej[VYa Uh[Ug]b hY'c]hifY YighYgU Zica `I dDN]d[UNA UhfYg`H]bVi W][d[žg]Uhf]b[žcf g]U`]b["D]UVY'c]hif] `Y VcbNXie hYYA YécZhYgU@dchNig'c]bgZica hY UMai `U]cbcZaUh[UgUNUgcdY] YigkUhfZica `gYd]b[`XkbUNxgZNb]b[hY Zi bU][cbg`dthf]b[hYgU' Hrd]W hud@cZ/c]higU Xia [[YUfY'%igl[dt]b] hY /c]higUUhf&EN hi glcbcZ/c]higUUhf' EkYX[fckh/(E\UNb]b[`cZhYZ]`Y/) E `cggcZkdtXie hYgU/Y4 Yg UX*EUWcfU@bWcZgUUhf]bhY/c]hi

Gj Yffyg

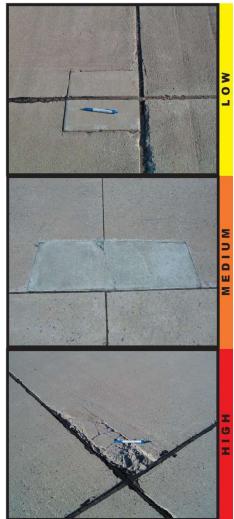
- @ck ?]b[YbMU nij ccXWbMJjcbhfci [\ci HhYgNJjcb" CHUbHgcMZfa]b[`kY`k]h cbnUa]bcfUaci bcZUbnzZhYUkj YhnNgcZXLa U YchQbJa
- A Xii a ?]b[YbfUnit]f VibXijcbhfci [\ci lih YgNijcbžk]h cbYcf acfYcZ UnitZh YUkj YhnijczXia U YchyiticViiffb[le UacXi(UYXi ffY" GUUHbYXj]aa XijUYfYiUVia YHk]h]b&nilfg/
- < [[\?]b[YbfUnited WbAllcbhfd [\ci lfhYgNldbk]h cbYcf acfYcZ UnicZhYUcj YhdigcZXLa U YgdYgHzcWilf]b[1e Ugj YYXI fYf GUUh bYYgjaa YJUYfYlUVia YHi

FYILF cdicbg

- @ck?BcW/cb/
- AWAia ! gu'chbg

:][ifY7%.'D77~]biGU8taU[Y

884 Ga U` **DIAVAD77**Ł


5 dlw/gubufyuk YYhYcfj jbu dj Ya Yhi has been removed and replaced by a filler a UYfju': cf Wbyljcb Y Ui UjcbždUwjb [1g Xj JXXI be 1kc hulýg ga U flýghub) gei UfY ZNHI DXU [Yhij Yf) gei UfYZNHI @U[YcUwyg UfYXgaJWXX bh YbY ligNikb'

Gy Yffyg

- @ck?DUWjgZbMjcbjb[kYžkjh` `jhiyefbcXi)fjcfUjcb/
- A Xiji a ? DIWA L@XihijefUXZUMEf acXifUYgU]b[WbWgYbU6i bXhY Xi Yg DIWa Uhf]U WbWXigeXi Yiz k]h WbgXifUYYiiififih]bcf: C8' dehbijUi/
- < [[\?] DUW\\LgXNfcfU%ZyhY\vin gU`]b[Uci bXhYdUWcf \UQ\]b[` k]h]bhYdUWzle UgWYk\]WkUffUbg fvfUWa Yhi

FYLFcclicbg

- @ckË8cBch]b[/
- A YAJia ? FY: IUW dliw of fY: IUW hY gU/

:][ifY7%. D77GaUDW

&" @Lf[YDIWAD77L

Patching is the same as defined ZfUga U`dIW` \ckY Y2h YIFUcZh YdIW [gacfYhUb) 'gi IfY ZYH5 i If] ImAHgUdIW hUh UgfYfUWAH Y cf][JbU'dJ Ya YHWW gYcZdUWa YHcZ i DXX[fci DXi If]]Jyg'H Ygj YfInify YgcZLi If]Inin WHFYH YgJa YUgh cg/ZffY[i UfdIWJb[."

Gy Yffyg

- @ck ? DUW/ga baljcbjb[kY žk]h ~ jlijycf bc Xihijcfujcb/
- A Wiji a ! DIW/\L&XMfcfU%ZUMef acXMUYgU`]b[WbWgYbUci bXhY YLYgDIWaUhfjUWbWXgcX[Xžk]h` WbgXMUYYZCfifa]bcf: C8'dcMbfjUl/
- <][\!DUW\UgXNfjcfUNZNhYfVm gU]b[UfcibXhYdUWcfVlQyb[K]h]b hYdUW2leUgNYk\]WkUffUbg fYdUWaYb!

FY/Lifcdichg

- @ck **Ë8c Bch]b**[/
- A YAjia ! FY/IUW/dIW/cff//IUW/hYgU/
- <][\ËFYIUWdIWoffYIUMhYgU/</p>

:][ifY7%. D77@J[YDJW

&" Docki lgfD77Ł

5 dodi ligUga U`dJWkcZdij Ya YihhUiMYU g`ccgZica hYgifZWXi Yle ZYYiY hUk Uljkb[bWa VjbU]cbk[h Yi dbgj YU [fY] Uhgʻ Dodi lgi gʻUmiU [YZica Uddid]a UYm?(bWle'(]bWgibX[La YYf UXZica %&]bWle &]bWgXXi"

Gj Yfflýg

No degrees of severity are defined for popouts. < ck. y Yžchchi leja i gł. YY Phyj Y VZCFY hyntfywi litxlej UAGNGG [YZJ YU Ychchi litxlejinia i głil VMX Utilici ja UYmih FYchchi lejchf gi UYmifXcj Y h YHJFYgUVUFU

:][ifY7%. Datilg

&"Diadb[fD77Ł

8¥4Addb

Dadh []ghYYNicozaUrfu VnkUrfhci [\`chiger VIO/gWigXVnNZNico cZhYgWibXfdigh [`cOgʻ5ghYkUrf]gYNiXZHMf]YgdffWigz [fij YzgbZ WincfgHDXfYj IgbUdic [fygj Y cggcZdj Ya Yrig dbffiG fZWgQbh [UX VgYcfg V fOXaUrfu cbhYdj Ya YriWgYle 'chiger VIO/gtfYj [XbWcZ dadh ['Dadh [bMf 'chigbNWhgbcf 'chigDYf UX cggcZg dbffik]Wk]``` YXle VIO/h [ibXffYHDXcOg'

GjY]hi@jYg

BcX (fygzz) Ylmify XZbX - igg Zy it ic by With Urladb Y gg

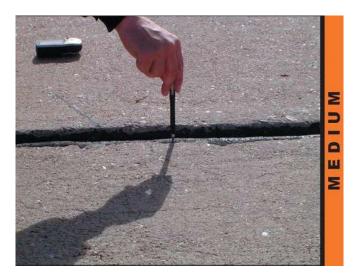
&" GV]b[fD77Ł

Gj Yfflyg

- @ck ? 7ft/jb[`cfat/ft/k[0]b[`Y] jggcj Yfg[b]7Wb†gU/tfY/H Yg f2UV[g]b` [ccXWb3J]jcbk]h bc'gWjb[''H YWU/dUMb`ai g1WkY` X2[bXUX Ng`mfWi[b]nX
- A Wijia ! GU/jegu/Xcj Y Uddici ja Uhm)ı ´cf `YejcZhYejf2U/kjh`gaY
 : C8 cd YHjU/
- <[[\!GU/]ggj YYngUVXWigb[U\][\:C8'ddYb]U'I g'UniacfYhUb'
)1 'cZhYg fZUV[gUZWIX'
 </p>

&": U`l]b[fD77Ł

GHina HittAi Ho[]gUAZATBWcZYY UjcbUiU'c]bittViUWNi gXVnid Nj U cfVibg:]XUjcb'


Gj YHyg

Severity levels are defined by the difference in elevation across the fault and the Use VITXXXXII provide Ulm IX g2 Vit g2 Vitage Vitag

	Fi bktig#11]ktig	5dfcbg
@	O% €]Ы V	%#Ë% &} ₩
Α	% ∉ Ё%≴₿₩	% 82 %]bW
<	2%8] 5W	2%]ЫМ

FYLIFCdicbg

- @ck?BcWkb/
- A YAjia Ë; fjbAjb [Ucb [hY'c]bl/
- * <][\Ë; fb¾b[cf^c]bhcUXhbgAffAghtUjcb'</pre>

&" G UHYXGWAD77Ł

= break by which the severity level of this distress type, as defined below, by the local by th

Gy Yffyg

- @ck? Slab is broken into four or five pieces with the vast majority of the cracks fig Y,) cht/HicZck?gj Yflm/

FYLFccHcbg

- @ckËGU'7fU<u>M</u>g
- A YAjia !: i `` XXin dJWcffYdUWhYgU/
- <

&" G\f]b_U[Y7fUWfD77Ł

G\fjb_UYVKV\gtfy\UffjbYVKV\ghUitfyigUmdbmUZkZYAdj UXXcbdh YPbXUkigghYYbJfYgU/HYmfYZfaYXXfjbj hYgHjbj UXVkfjbj cZhY WbM9YUXigUmicbdalPbXhfcij\hYXfh cZhYgU/

Gj YHyg

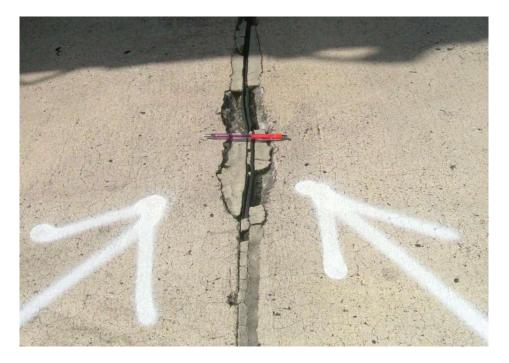
No degrees of severity are defined. It is sufficient to indicate that shrinkage cracks exist.

FY/Lifedicbg

• 8cBch]b[

"

' \$' >cbhGU gfD77Ł


>c]digU`]d[]ghYAjgdY[fU]cbcZhYgU/X[Ygk]h]b&ZYirZhYgXvZhY'c]di 5 'c]digU`i g UniXYgbdY[fU]cbcZhYgU/X[Ygk]h]b&ZYirZhYgXvZhY'c]di UbU[`Y"CdU`]d[`fYg`]gZica `I Výgj YghggggUthY'c]diMXV/Vi gXVir[bZhU]cb cZ]bMadYggVYaUH[Ugcf]hZJWcUg' K`YU_VibMYUthY'c]difVi gXViri cj Ykcf_]d[EMaVJbXk]h 1622[WcUg]gUchYfVi gYcZgU`]d["

Gj Yffyg

- @ck ? cj Y & Mitch UX gvic_bjble bcacfYhUbhfYd Wg X2 bXVm `ck `cfa Y4 i a `gj Yjm WUV gjk h``jhiYcfbc: C8`ch HijUžcf [g& YgghUb` & Mitch UX gvic_bjble a cfYhUbhfYd Wgjk h``jhiY: C8`cf ifY Xa U Ych HijU/
- A Wija ! cj ¥ & 20% hdj UbXlgVic_Ybjble a cfYhUb' 'djWgX2[b)XVin][\h cfa Wija WCWgcfga Y: C8'ddYbfJU ¥ lgfld žcf lg& YgghUb & 20% hdj
 UbXlgVic_Ybjble djWgcf2U [a ¥f7Xžk]h ga Yc2hYdjWg ccgYcf Ugbbž Wigb[WbgXfUY: C8 cfffYXka U YddYbfJU/

FYLFCdidg

- @ck?BcWjcb/
- A Yajia ! dhZfa UdffjU Xith dIW
- <

'%7cfbYfCdUgfD77Ł

7cfbYgU']b[]ghYfU Y]b['cfVYLXkbcZhYgU/k]h]bUtbici]aUYm&ZYicZ hYMbY'' 5 MbY'gU XJZYgZca UMbYVYL]bhUthYgU U[`YgXkbkUX]c]bYgNhY'c]b1k\]`YhYVYL Y PbYgJ YIJW mhfci [\ hYgU'

Gj Yffyg

- @ck ! YhY%hYgU]gVic_Yb]be cbYcflkc dW/gX2/bXX/mck gj Yjhn WU/gk]h "jhiYcfbc: C8 cbYbJU/cf&hYgU]gX2/bXX/mbYa Wji a gj YjhnWU/k]h "jhiYcfbc: C8 cbYbJU/
- A Wiji a Ë%hYgU`[g\kc_\b]ble lkc cf a cfYd]WgX%[b)X\ma Wiji a gj Y]lm\kU\gUXUZk gaU`ZU a YbgaUhWU@Hiff`ccg/%EhYgU`[g X%[b)X\mdbygj YfZZU a YhX\kU\hUiaUhWadUj\X\mUZk` \Uf]bX\kU\gcf*EhYgU`\\gXNfcfUYXle`hYdc]bhk\YY`ccgYaUhfjU[g Wigb[: C8`dchHijU/
- < [[\ Ë%hYgU`\\g\fc_\b]ble1kc`cf`acfYd]Wg%2b%\in`][\`gj`Y]m` 24[a YbhX\fU\gk]h`ccg\cfUgbhid[a Ybg%2d]WgcZhYgU`\Uj Y VYb%giUW&le hYN PbhhUfffYMå ([Y\\thfXY]]gg~cf' EhYgU`\Ug XPffcfD%le hYdc]bfk\YY`ccg\a UhffU`[g\id gb[\]]\`: C8`ddYbfjU'

FYLFCdichg

- @ck?BcWkb/
- A Wia ! dffU Xih dlW

' & 5**GF fD77**Ł

5GF [gWi gX\inWa]W fYU]db Wik YbU_U[gUXWit]bfYU]j Yg`]Wa]bfUg k\]WZfa U[Y'' H Y[Y Ugf\gkUh2Wi gb[Y] dbgdbk\]Wa UbHa U YhY WBANFYUXUXHigli WifYg' 5`_U[gUfYa cgizZib]blicX WA\inh YddfiDX Wa Yhk]h]bhYdj Ya Yh'i 5GF WU]b['a UniYUWWYUFX\inWa]W dj Ya Yh X§]Wg'

J]gU]bAWefghU5GFaUniXdNgHibWXX

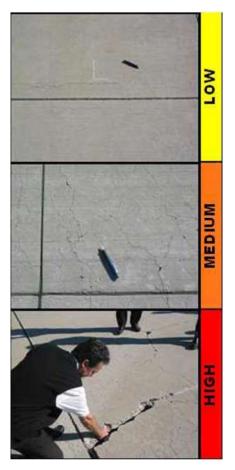
% 74UMb[cZhYWbWFYdjYaYbfbUaUddUMb£

& K\]PZVickbž[fubicfchYWcfYX[Y`cfgN]b]b[`aUmWdNgBh1FhYVICW gifZW

- "5[[fY[UYdcdcilg
- (" =bxNL@Y]bWbXNYj c`i a YfN dbgddfhUia UniYg HjbXgleff|dbcZUXUVIthf JdY[fU'gfi WifYgcfd.ngW YYa Ybg'9] UadYgcZN dbgdb]bW/XYg cj Jb[cZ UghUhdj Ya Ybg`][\HWb1jHjb[žgU/Zi Hjd[ž'c]dfa]gJ][ba YbžUXXi Hi gdbcZ c]dfgUgcfYl dbgdb'c]HiJ_Yg'

6Wi g/5GF [ga Uhf]UXX/bXbb25GF [g[YbMU ndPgb1fhfci [\ci lfhYdlj Ya Ybh gNljcb' 7cf]b[UXXbMPYdNic[fldk]VVbUngg[ghYdbn322b]ljj Ya YhcXle` Wb2fa hYdYgbWcZ5GF'' HYZE``ck]b['g\ci `XVY_Yhljba]bXk\Yb]Xb1jZjb[hYdYgbWcZ5GF hfci [\j]g U]bgNNjcb

- %; YMU nöGF Xighgegtfybelieven yXibh YZigizik mit guzy vibgi Vieb' =b' Vibitgäd UgiVig fjb_U YVIUV.[b] Woewifh YXinezvibgii Vieb UXigUtitfyih k]h]bh YZigimif'
- & 5GF [gXZAFHJUXXIca 8:7fUA]b[VnhYch9bWcZulUA]b['dhchb3AVUfle' hY'c]bhiUW 8:7fUA]b['dfXia]bbhniXj Ycch9GU2f[YgcZdfU'Y VlUAgle' 'c]bhiUVgUX]bMfVlUA]b['k]h]bhYgUV'
- ''' 5GF [g**XZhYHJUYXA**ca AUT7fU<u>A</u>b[#GW]b[VnihYdYgbWcZj [g U`g[bgcZ Y dUgdo'


GjY]hi@jYg

<

A jbja U le bc: cfyjj b CV Wi84 U YE C8E de YH jU Zca WW go'c jb gcf 5 GF fYU Wabdi lg WW gU h Yg fXWU fY jj \ hilf Waa icf `Ygg!'@jhiy le bc Yj JXBW cZacj Ya YH jbdi ya YH cf g ffei by hj gli Wift gcf Y ja YH g'

GcaY: C8 dd**YhljU/]bMXLgXg**kYkljb['cf dhYf: C8 fYacj U'a YhcXgaUniX fYei]fXX AUniXYj]XbWcZgU/acj Ya YhlibXef gcaYXLaU Yle UXUVih gli Wiffgcf YYa Yhg'

- A XAJI a 50F Xldingslg XZAYDIJU XZica "dk Vin Uj Joj" obYcf acfYcZhY Ze "ck Joj. jb XN g X: C8 defYDJUZ Jb XN g XXIV Alb ("cZh Yg Užga YZU a Ybg" Udd (VIV kjet U MCV/Jb Yg Njebgi Yg Džg i ZUV dedi lge ZVD XDY a Um c VM iz dlimbe Zk JXF VIV kjet YX a Jb Dimi Ka a "cfk JXH ih Una Um Y g Vaj JXXV mil ("hf VIV kjet
 - CbYcf Vch cZh YZc~ck]b[Y]gh %@ccgYcfa]ggb[VbMAYZt[a Yigk\]W cbgY\][\:C8 cbYbHZž &GU/g fZUYJbY f]mUXZ bMcbg[bZWbhm XI fUXXUXclj Ya YhYYi JfYg]aa YJUYfYLJf?a UnUgcfYei JfYfYLJfg]c UXUVHigh WifYgcf YYa Yig'

This Page Intentionally Left Blank

APPENDIX D

DETAILED PAVEMENT CONDITION DATA

FY=bghNkcbFYccfh

		-				
5@8CH57ca Vjb¥\$889% ¥b¥UP&8UY	\$ % #8 ;#8\$88	:				LĮY%Z
Wikof)A\$		BLAY	< لله ٢ ٩٢٢	ci bhiFY[]cbU'5]fdcfl	n	
FUW 58%	BLAY	5dfcb%{U lg /Y	Igy s	5DFCB 5f	MU, 'ž& Ge	: h
GWJcb \$%	cZ &	: fca. 9X YcZDjY	a Y ih	H. GW/65%&	@Bi7c	bgHi) #͸,
Gif zuw 57	:Ua]`m 5@8CH65	fdg NdbY		70h(cfm	FUb	G
5f¥U (*ž	:++Geh @¥b[ŀ	ı. ' \$\$∶h	KDA.	%) : h		
GU/g	GUV@h[h.	:h GUV	KJMA.	:h	>c]bh@b[h.	:h
G. ci XXI.	Chi Yi Hulk	; fU	¥X \$		@UbYg \$	
GWJcb7caaYblg						
Kcf_8UIY %##%\$\$	Kcf_HnlY B	k 7dəfi Vidə! ∃əjij U	7cX	Y BI !=B	=gAUcfA∕F.Hf	iY
Kcf_8UN()#\$\$	Kcf_Hnly B	k 7chġli Vjich! ≐bjljU	7cX	Y BI !=B	=gAUcfA∕F.H	ĬY
@@jibgl'8UN %#8#8	\$% H3	JCLadYg -	Gfj y ax	1		
7db X]dbg D7= ++						
=bg1Wjcb7caaYbbg						
CladYBiaVIf. \$%	Hndy F	5fYU	(-()'\$\$Ge h	D7= +(
GladY7caaYhy						
(, @/ H7 F	@	+('\$\$:h				
(, @/ H7 F	Α	%)'\$\$:h				
& F5J9@ B ;	@	' \$\$\$\$ Ge h				
CladYBiaVYf. 🖇	HnlY F	5 M U) \$(+'\$\$ Ce h	D7 =, +,		
GladY7caa¥blg						
(, @/ H7 F	@	+)'\$\$:h				
(, @/ H7 F	Α	%%)'\$\$:h				
	Hnly F	5 M U) \$\$\$\$\$\$ Ge h	D7 = +		
CladYBiaVYf. §	HUX F					
GladYBiaVYf. § GladY7caaYbig	ritus r					
	e e	&\$55 :h				

BY kcf)A\$			BLa	IY < UIgYYAd[]	b7cibhiFY[]cbU	5jiddh	
6fUW	5 %		BLaY	5đđb% Ulg	ary Iax	5IFCB	5fYU	, ' ž & Ge h
GWjcb	\$&	ď	2 &	: fca. GWjch	i% /	H. H <u< td=""><td>ધાહ્ય</td><td>@[∄i7chd]i %%&#</td></u<>	ધાહ્ય	@ [∄i7chd]i %%& #
GfZW	57	: Ua]`m	5@8CH65	dichg Neb	N	7UN cfm		FU G
5fYU		'*ž-(* Ge h	@ `b []	h. &):	h KJMA.	%) : ł	1	
GUg		GW@h	[ħ.	:h	GUVK Mh.	:h	>cjbh@	1ենին. ։հ
Gai XXf.		GYNH	x i X		; fUXY \$		@UMg	8
GNIcb7	caa Yilg						_	
Kcf_80	h %** *\$	\$ Ko	f_Hnty B	Sk 7dgfi Vjdb! =bji		7cXX BI!=B	≓g∕	UcfA∕F. HiY
Kcf_80	NY %\$#8≿#%	- K	f_Hdy B	Sk 7ch gfi Vj cb! ≐bji		7cXX BI‼=B	-g ⁄	WcfA∕F. HiY
@L ijihg l	'8UW %	8888%	H	UCLadYg %	Gfj¥	nx '		
7db Xli dd	ng D7≒),						
	b7caa¥b							
GladYB	iaVYf. \$	Hind	Y F	5fy U)+%'\$\$Ge h	D7 =	*%	
GadY7	caa Ybig							
(, @/	⁄ H7 F		@	'- \$\$\$:h				
(, @/	⁄ H7 F		Α	888888 :h				
(· C≝	@ D@ @5;	9	B)\$\$\$ Geh				
)+ K	95H 9F=B	\$	@	&)+'\$\$ Ge h				
)+ K	95H 9F=B	\$	Α	&)+'\$\$ Ceh				
GadYB	iaW£.\$	(Hind	Y F	5fYU) \$\$\$\$\$\$ Ce h	D7=)&	
GadY7	'ca a Yblg							
(, @/	⁄ H7 F		@	- 858 : h				
(, @/	⁄ H7 F		Α	()*'\$\$\$:h				
)+ K	95H 9F=B	\$	@	&\$\$\$\$\$ Ge h				
)+ K	95H 9F=B	\$	Α	&\$\$\$\$\$ Ceh				
GladYB	iaVM. §) Hnd	Y F	5FYU)*-''\$\$\$Ge h	D7=	*%	
GadY7	caa Yilg							
(9	⁄ H7 F		@	(-\$\$\$\$:h				
(, <i>@</i> /			Α	&\$\$\$:h				
	⁄ H7 F							
(, <i>@</i> /	′нл 95 H:9F=B	\$	@	&(+'\$\$ Ge h				

BYIkcf)A\$		BLaY	< ધોઝુ: `Y Acf[U b7ci	blaFY[]cbU'5]fdcfh	
GFU5AV. F% '*	BLAY	Fibkun%!' * < (1)	™ Igy Fi	BK5M 5fy	&-ž& Ge h
GNIjch \$%	cZ %	fca. Fibkum%9bA	ζ.	HŁ Fibkuń*9bX	@ Liji7chg'i %&% *&&%
G f X X 57 : U	a]`m 5@8CHNFKg	g Ndby		7UN cfm	FUL. D
5f¥U &-ž&G	eh @Mb[h.	'≱ :h	K]%h.	+) : h	
GU/g G	W@ b [h.	:h GUVK	jyh.	:h >	bh@b[h. :h
Gai XXI. C	i Withdy	; fux	\$	@	UMg \$
GW/cb7caa¥blg					
Kcf_801Y %##%\$\$	Kcf_Hnty By	"7chglii Vijch! ≐bjij U	7cX	BI !=B	=gAUcfA∕F. HiY
Kcf_8UY %8%#88%	Kcf_Hnty Byk	°7chgfii Vljch? ≐bjljU	7c X	BI !=B	=gAUcfA∕F. HiY
Kcf_8UY *#489%	Kcf_Hndy 7fU	<u>//Giujib[1:57</u>	7cX	7 G 57	=gAUctA∕F.:UgY
Kcf_8UY *#\$#\$\$%	Kcf_HntY Gf2	WGU! 7dUHf	7cX	CG7H	=gAUcfA∕F.:UgY
@ Lgjihg!'8UY %***** %	HIU	LadYg ()	GIJYHX	+	
7db ¥l]dbg D7 ≒ **					
=bgNNjcb7caaYblg					
QladYBiaVIf. 🎗	Hnd Y F	5 fy U)*&'\$\$Ge h	D7=, *(
CladY7caa¥big					
(, @/ H7 F	@	88):'88 :h			
(, @/ H7F)+ K9 5H 9F=B;	A @	&\$\$\$:h)*&'\$\$ Ce:h			
)+ K95H 9F=B; QLad YBia Wf. %%	Hnly F	5fYU)*&'\$\$Ge h	D7= *(
GadY7caa¥by) 4.000	Dra (
(, @/ H7 F	@	'')'\$\$\$:h			
(, @/ H7 F	Α	&%\$\$\$:h			
)+ K95H 9F-B;	@)*&/% Ge h			
GladYBiaVIf. % GladY7caaYblg	HndY F	5 f¥U)*&'\$\$Ge h	D7= *&	
(, @/ H7 F	@	' \$ \$\$\$ \$:h			
(, @/ H7 F	A	'')'\$\$\$:h			
)+ K95H 9F-B ;	@)*&/%\$ Ge h			
CladYBiaVYf. & CladY7caa Ybg	Hndly F	5fYU)*&'\$\$Ge h	D7 = *-	
(, @/ H7 F	@	(% \$\$\$:h			
(, @/ H7F	Α	%('\$\$:h			
)+ K95H 9F-B ;	@)*&/\$\$ Ge h			
CladYBiaVf. '& CladY7caa Ybg	Hndy F	5fNU)*&'\$\$Ge h	D7=, +\$	
(, @/ H7F	@	'&{'\$\$:h			
(, @CB; +H 8+B5@#F5E 7F57?=B;		%888 :h			
)+ K95H 9F-B;	@)\$\$\$\$\$\$ Ge h			
QadYBiaWf. '- QadY7caa Ybg	HndY F	5fYU)*&'\$\$Ge h	D7 ≒ *-	
(, @/ H7 F	@	'- \$\$\$: h			
(, @/ H7F	Α	%(' \$\$:h			
)+ K95H9F-B;	@)*&/\$\$ Ge h			
CladYBiaVf. () CladY7caa Ybg	Hndly F	5fYU)*&'\$\$Ge h	D7 =, *&	
(, @/ H7 F	@	'')'\$\$\$:h			
(, @/ H7F	Α	' &{'\$\$:h			
)+ K95H9F-B ;	@)*&/'\$\$ Ceh			

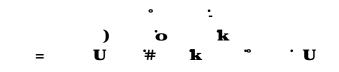
B¥ikcf)A\$				BLAY	< (19)	¥Acf[U	7ci b ini F	Y]dU 5	jittin			
HUHW	H 7\$ %		BLA Y	HIK	h7db WH f\$	% UlgY Y	IgY	H5L-K	5M	5fy U		*ž*\$Ce h	
GWJcb	\$%	ď	L %	: fca. I	`ibkUn%!' *			HL.	5dfcb	\$%		@Liji7chgʻi	% \$#/8# /~
G FZUW	57	: [a]`m	5@8CH657	HI king	NdbY			7U 1	(cfm			FU <u></u> . G	
5fYU		*ž+*\$œh	@ b [h		%) :h	K	Xh.		'+:h				
GUVg		GUV@h	[h .	:h	GUVI	KDAN.		:h		>cbti@	Ъh.	:	h
Gai XX.		GfWiH	- xilX			- X 8				@Ub¥g	- 8		
GWkb7c	a a Vilo r				,					8	+		
_	X %##%\$\$		ef_Hnd¥ B¥ ef_Hnd¥ B¥	<u> </u>				XX BI				∕F. Hi¥ ∕F. Hi¥	
00	8UN %#8 g D7=		HRU	GLadYg %	6		₫ij₩₩	X %					
-	7caa Hig		N F			* . * 0100	<u>C. I.</u>)	<u></u>			
Glad Y5 Glad Y7c	.aVYf. \$% aaYblg	Hu	КГ	3	FNU	*+* \$\$\$	ωn		D7=,)	O			
(' 60	C7? 7F		@	' +) '5 \$	Geh								
-	H7F		@	% 85 5	:h								
	H7F		Α) \$\$\$\$\$:h								
(, @/													
	5H:9F=B;		@	'', \$\$\$	Geh								

BYIkcf)A\$					BLA	¥	< Lilg y	"¥Acf[l	b7cil	haFY[]	diU'5]fde	fh			
6FU5W	H7\$&		BL	àΥ	HUJk	hi7db	NH \$8 ~	ulgr	í Igy	НБІ	L =K5 N	1 5	FYU		- 268e Ge h	l
GWJch \$	%	Ć	Z %	: f	ca. I	Fibkth	%:' *			1	H c. 5	dfcb;\$%			@Lighi7chg	4 %8#%+888
GifZUV 5	57	: Ua]îm	5@8C	H657HJ	ijkling	Ndð	<u>c</u>			-	7UN[d	ìm			FU <u></u> . G	
5 fYU	- 2	58e Ge h	@	% [h.		%% k	1	K	∑Mh.			:h				
GU/g		GUV@¥	(ħ.		:h	(GWK	ħ.		:	h		>cbti@	b[h.		:h
G\ci`X¥f.		CHYNH	nly				; fUXY	\$					@Ubyg	\$		
GW/cb'7ca	a Yilg												U			
Kcf_8Uł¥	% #/#/~\$\$\$	K	cf_Hhd	YBK 7	ch gfi Vi jc	₽;. ₽}}	J		7	7cXX	BI !=B		-gA	UcfA	√F. Hi¥	
Kcf_8Uł¥	% \$1%+15\$\$	K	cf_Hhd	Y B % 7	ch ghi Vij a	₽;. ₽11	J		7	7cXX	BI !=B		-gA	UcfA	√F. Hi¥	
@Lijihgl'8	UPY %%88%	\$%		HIUCLE	d'Yg a	8 2			đfj¥	XX 8	z					
7cbXIIchg	D7 = *,															
=bglivljcb7	caa Ybig															
QadYBi a	VYf. \$%	Hn	ľ	F	5	fyu		(%('\$	\$Œ h		D	∕⇒ *+				
QadY7ca	a Yblg															
(, @∕ 1	17 F		@) 858	:h										
(, @/H	17 F		Α		85855	:h										
)& F5J9	9@ B ;		@		% 5, '\$ \$	Geh										
G ad YBi a	VI. \$&	Hn	ľ	F	5	fYU		(, - ' '\$	\$œh		D	/=, *-				
QadY7ca	a Ybly															
(, @/ I	17 F		@)'58	:h										
(, @∕ 1	17 F		Α		&, '\$\$:h										
	9@ B ;		@		' 8855											

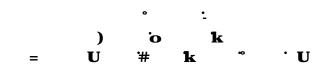
BYK	cf)A\$			BLa	Y <ul< th=""><th>¥YAd[U</th><th>b7cibhnFY[]d</th><th>U5jfdefh</th><th>1</th><th></th><th></th><th></th></ul<>	¥YAd[U	b7cibhnFY[]d	U5 jfdef h	1			
6fUJ	W. H:5B; \$	\$%	BLAY	HI]ktin th	lf\$%< l ig ry	IgX	H5L=K5M	5 f	N U	%ž)+	- Ge h	
GN	da \$&	ď	&	: fca. 5dfcb8	%		H. H.	ધ ાકુ		@L	hi7ch g hi	% # # 855 %
GfZ	W 57	:Ua]`m 5	6 68CH6 57	'HU]'UMg Ndbi	C C		7 UN (cf n	n		FU	р. Н	
5f Y U	r	+≵ +* Ge h	@ \$ 6[h.	. %\$:ŀ	1	K]Xh.	· · ·	h				
GU/g	£	GUV@ b []}	1.	:h	GUVK Mh.		:h		>c]bh@Yb	[h .	:1	h
Ġа.	XMF.	CfWiHd	r	:	; fUX \$				@Ubyg	8		
GW	do7caaYbbg											
Kɗ_	8UX %***\$\$	Kcf_	Haly By	k 7 cbgfii Vļi cb! =b ji ji	ט	7	CXX BI!⊨B		-gAU	¢cfA∕F.	Hiy	
Kɗ_	8UX %##888%	6 Kcf_	Haly By	k 7cbgfii Vijcb! ≐bjiji	ט	7	CXX BI!=B		-gAU	¢cfA∕F.	HiY	
@Lihi	bgl'8UY %\$	8488%	HRU	CLadYg &		Gfj¥i	X &					
-	-			-								
7dð	hobg D7=	*8										
	il]cbg D7= Nijcb∀caaYblg	*\$										
=bgħ			F	5610	1%11	'\$\$Ge h	D7 =	*+				
=bgħ Qåd	Njcb'7ca a Yolg		F	5f N J	۱ <i>%</i> ۱۱	%%Ge h	D7=	*+				
=bgÑ Clàd Clàd	Nija Vif. 8%		F	5f¥U +\$\$\$\$:h	1 %11	'\$\$ Ge h	D7 =	*+				
=bgN CLad CLad (,	Njcb'7ca a Holg FYBi a Vif. \$% FY7ca a Holg				1.0%11	'88 Ge h	D7=	*+				
=bgħ Qåd	Wybb7caa Ydg YyBiaWf. &% YY7caa Ydg @/H7F		@	+ \$\$\$:h	1.0%11	586 Ce h	D7 =	*+				
=bgh GLad GLad (, (,) \$	Wybb7caa¥dg IYBiaVf. %% IY7caa¥dg @/ H7F @/ H7F		@ A	+\$\$\$\$: h *\$\$\$: h	۱ %۱ ۱	88 Ge h	D7 -	*+				
= bgN GLad GLad (, (,) \$)+	Myb'7caa My IYBiaVf. % IY7caa My @/ H7F @/ H7F D5H7<-B;	Huly	@ A @ A	+\$\$\$\$:h *\$\$\$\$:h %\$\$\$\$ Ge h		889 Ge: h 1889 Ge: h		*+				
=bgN GLåd GLåd (, (,) \$)+ GLåd	Mgb7caa Mg IYBiaVI. % IY7caa Mg @/ H7F @/ H7F D5H7<=B; K95H:9F-B;	Huly	@ A @ A	+\$\$\$\$:h *\$\$\$\$:h %\$\$\$\$Geh '%\$\$\$\$\$Geh								
=bgM GLåd (, (,) \$)+ GLåd GLåd	Myb 7caa Ydg IYBia Vf. \$% IY7caa Ydg @/ H7F @/ H7F D5H7<=B; K95H 9F=B; IYBia Vf. \$&	Huly	@ A @ A	+\$\$\$\$:h *\$\$\$\$:h %\$\$\$\$Geh '%\$\$\$\$\$Geh								
=bgN GLad GLad (, (,) \$)+ GLad	Myb 7caa Ydg IYBia Vf. \$% IY7caa Ydg @/H7F @/H7F D5H7<=B; K95H 9F=B; IYBia Vf. \$&	Huly	@ A @ A F	+\$\$\$\$:h *\$\$\$\$:h %\$\$\$\$Geh '%\$9\$\$\$Geh 5f¶U								
=bgh GLàd (, (,) \$)+ GLàd () (,	Myb 7caa Ydg IYBia Vf. \$% IY7caa Ydg @/ H7F @/ H7F D5H7<=B; K95H 9F-B; IYBia Vf. \$& IY7caa Ydg \$9F90GCB	Huly	@ A @ A F	+\$\$\$\$:h *\$\$\$\$:h %\$\$\$\$ Ceh '%\$\$\$\$\$ Ceh 5f%U %}\$\$ Ceh								
=bgf GL&d (, (,) \$)+ GL&d ()	Myb 7caa Ydg 1YBia Vf. \$% 1Y7caa Ydg @/ H7F @/ H7F D5H7<=B; K95H 9F-B; 1YBia Vf. \$& 1Y7caa Ydg \$91F9006CB @/ H7F	Huly	@ A @ A F A A	+\$\$\$\$: h *\$\$\$\$: h %\$\$\$ Ce h '%\$\$\$\$ Ce h 5f¥U %\$\$\$ Ce h \$\$\$\$\$ Ce h \$\$\$\$\$: h								
=bgfi GLåd (, (,) \$)+ GLåd () (, (,)&	Myb 7caa Ydg 1YBia Vf. \$% 1Y7caa Ydg @/ H7F @/ H7F D5H7<=B; K95H 9F-B; 1YBia Vf. \$& 1Y7caa Ydg \$91F9006CB @/ H7F F5J9@B;	Huly	@ A @ A F A A @	+\$35\$: h *\$35\$: h %\$35\$ Ce h '%\$26\$\$ Ce h 55f¥U %\$15\$ Ce h &\$45\$\$: h &\$45\$\$ Ce h								

						l y Y Ad[U					
6fU5W	Ht 5B;	\$%	BLAY	HI JkUn	ſ ŬĮĽ\$%<Ŭġ Ť	Y IgX	H5L-K	5M 5	5fYU	%ž)+ Ge l	ו
GXVij ch	\$%	ď	Z &	: fca. 5d	Ъ\$ %		HŁ.	H <u(ug< td=""><td></td><td>@Liji7ch</td><td><u>}</u>4 +##8858</td></u(ug<>		@Liji7ch	<u>}</u> 4 + ##8858
GfZW	57	: Ua]`m	5@8CH657	7 HU] UMg	NdbY		7U1	[cfm		FUb H	Ľ
5fYU		%£(, %Ge h	@b []}	ı. %	68:h	KJMA.		* \$: h			
GU/g		GW@Y	(ħ.	:h	GUVK JAh.		:h		>cbt@b	(h.	:h
Ga'XXf.		GAMH			; fUX \$	3			@Ubyg	8	
	caa Yiig				, ,				8	Ŧ	
Kcf_80	ny %##%\$	8 Ko	cf_HndYB	ik 7d əfi Vi db!	: =b]l]jU	70	XX BI	-B	=gAT	UctA/F.Hiy	7
Kcf_80	P¥ +##8888	& Ko	cf_HndYB	ik 7 dəjii Vj idb!	∃ b]lj U	70	CXX BI	B	-gAU	UctA/F. Hiy	7
@Lähi-bed	''8UFY %	88889%	HH	JCLadYg &		Gfj¥ð	X &				
	ng D7=					- 5					
	b 7ca a Ybly										
U -											
GadYB	iaWf. 🖇	% Hn	Y F	561	U (*9	85 8 Ge h		D7 ≒ *(
GadY7	'ca a Yblg										
	′caa Ybig ⁄H7F		@	8895 5 : 1	1						
(, @/	C		@ A	88958 : %8958 :							
(, @/	⁄ H7F ⁄ H7F				1						
(, @/ (, @/)& F5	⁄ H7F ⁄ H7F	5	Α	%\$\$\$\$\$: I	n : h						
(, @/ (, @/)& F5)+ K9	⁄ H7F ⁄ H7F 5J9@ B ;		A @	%\$\$\$\$\$: } &%\$\$\$ G	1 : h : h						
(, @/ (, @/)& Ft)+ K9)+ K9	⁄H7F ⁄H7F 5J9@ B ; 95H:9F= B ;	;	A @ A	%\$\$\$\$\$: 1 &2\$\$\$ Ge &8\$%\$\$ Ge	1 : h : h : h	- '\$\$Ce h		D7 = *'			
(, Ø/ (, Ø/)& F5)+ K9)+ K9 QådYB	/ H7F / H7F 5J9@B; 95H:9F-B; 95H:9F-B;	;	A @ @ A	%\$\$\$\$\$: 1 &2655 G &8\$%\$\$ G &8\$%\$\$\$ G &8\$%\$\$\$ G	1 : h : h : h	- '\$\$Ge h		D7 ∹ *'			
(, @/ (, @/)& F5)+ K9)+ K9 QiadYB QiadY7	/ H7F / H7F 5J9@ B ; 95H 9F B ; 95H 9F B ; iaVIf. §	;	A @ @ A	%\$\$\$\$\$: 1 &2655 G &8\$%\$\$ G &8\$%\$\$\$ G &8\$%\$\$\$ G	h : h : h : h U), *	- '\$\$Ge h		D7 = *'			
(, @/ (, @/)& F5)+ K9)+ K9 Qad YB Qad Y7 (, @/	/ H7F / H7F 5J9@B; 95H 9FB; 95H 9FB; 95H 9FB; ia Vf. & /ca a Ydg	;	A @ A X F	%8988 : H &&988 G &&9788 G &&9788 G &&9788 G &&9788 G	h : h : h : h U), *	- '\$8 Qe h		D7 = *'			
(, @/ (, @/)& F5)+ K9)+ K9 Qåd¥B Qåd¥7 (, @/	/ H7F / H7F 5J9@B; 95H 9FB; 95H 9FB; 95H 9FB; ia Vf. \$ ca a Yig / H7F / H7F	;	A @ @ A N F @	%\$\$\$\$\$: h &\$\$\$\$\$ G &\$\$\$%\$\$ G &\$\$\$%\$\$\$ G &\$\$\$%\$\$\$ G 5f¶ %*'\$\$: h	h sh sh U),*	- '\$\$Ge h		D7 = *'			
(, @/ (, @/)& F5)+ K9)+ K9 QiadYB QiadY7 (, @/ (, @/ (, @/)& F5	/ H7F / H7F 5J9@B; 95H 9FB; 95H 9FB; 95H 9FB; ia Vf. \$ ca a Yig / H7F / H7F	3 & Hhri	A @ A N F @ A	%\$\$\$\$\$: H &\$\$\$\$\$ G &\$\$\$%\$\$ G &\$\$\$%\$\$\$ G &\$\$\$%\$\$\$ G 5fN %}*'\$\$: H %)('\$\$: H	n sh sh sh U),* n sh	- '\$\$Ge h		D7 = *'			

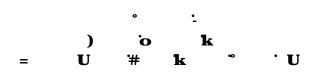
BYIkcf)A\$			BLAY	د لالع	TAd[W70	ci bhaFY(]cbU 5	5]fdefh		
6fubw	H:5B; \$&		BLAY	HI]ktrix U(t	「‱ Ulg / Y	Igy I	BL-K5M	5fYU	& & ' Ge h	
GWkb	\$ &	cZ 8	&	: fca. 5 d icb\$%	, D		Ht. <u(u< td=""><td>ġ</td><td>@പ്രോപ്പ</td><td>4 %#8#8\$%</td></u(u<>	ġ	@പ്രോപ്പ	4 %#8#8\$ %
GfZW	57	:Ua]`m 5	@ 8CH5 57]	HU]"UMg NddX			7Uh[cfm		FU H	
5fYU	% * *	Geh	@ \b [h.	%* : h	ŀ	KJMA.	,(:h			
GU/g		GUV@H[h	•	:h (EU/KJMA.		:h	>c]bh@	%b[h.	:h
G\ci¥Xf.		ClfWiHdd	7	;	fUXX \$			@UMg	\$	
GWjcb'7ca	aa Ybig									
Kcf_8UN	~ % #455 %	Kcf_	Hnly 6Lg	¥7digy!5[[fi[UY		7cX	¥ 65!5;	-g	AUctA∕F. ∶Ugy	
Kcf_8UN	~ % 48488 %	Kcf_	Hnly By	a 7cbgfii Vļ icb? ≐b ļi jU		7cX	K BI!⊨B	=g/	AUcfA/F. Hiy	
@L ghhg l'&	SUPY %#88#89%	ío.	HRU	LadYg (Gſj¥¥X	1			
7cbXIIcbg	; D77≒ -,									
=bg lWi cb*	7caa¥big									
QadYBi :	a VY. \$%	HndY	F	5fil) \$\$\$\$	\$œh	D7 = 9	/68		
QadY7c	aa Yolg									
	e e e e e e e e e e e e e e e e e e e									
	ne aVM. &&	Hudy	F	5fNU) 5555	\$Œh	D7= -	*		
QadY7c					<i>y</i>					
	œ		в	(,'58) Gerh						
(∙ C≕ CLadYBia	, -	Hnly	ь F	5fYU) 9000	\$œh	D7 = -	<u> </u>		
GadY7c		11111	Δ.	JI BJ	70000			т		
	0		_							
(- C =@	(D @65; 9		B	(%\$\$\$ Ge h						


B¥kcf)A\$			В	laY <Ư	g Y Acf[U	7ci blmFY[]cbl	0 5]fddfh			
6fUJW.	Ht 5B; \$&		BLàY	HI]ktria	ԱՐ‱ղֆ ւյ	í Igx	H5L-K5M	5 f YL	Г á	& 2&' Ge h	
GW jcb.	\$%	cZ 8	c .	: fca. 5did	b\$%		Ht. <u< td=""><td>[ધદ્વ</td><td></td><td>@Lijhi7chgii</td><td>%\$###\$\$\$\$(</td></u<>	[ધદ્વ		@Lijhi7chgii	% \$###\$\$\$\$ (
GIFZUW	57	:Ua]`m 5@	8CH57	7HI]1Ubyg N	ф¥		7 Uh[cfm	L		FU <u>b</u> . H	
5fYU	%ä)	(Geh	@ b [h	ı. % . ,	:h	K]MA.	*+:]	h			
GUVg		GUV@¥b[h.		:h	GUVK Mh.		:h	:	>c]bh@yb[h.	:	h
G\ci`X¥f.		Clf Wilhdy			; fUXY \$				@Ub¥g \$		
GWjcb7ca	aa Yolg								-		
Kcf_8UN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Kcf_1	Haly B	ik 7doğii Vjidb!∃		70	XX BI !=B		=gAUcfA	∕F. Hiy	
Kcf_8UN	(% \$##8\$\$\$ (Kcf_1	Hndy B	ik 7dəğli Vijdb? i	jiju	70	XX BI!=B		=gAUcfA	✓F. Hi¥	
@Lijibgi'8	SUR %#88#5 5	%	HH	JCLadYg '		Gfj¥N	X '				
	; D7 =, +%			-		-					
bgfWkb	7caa¥big										
GladYBia	a VYf. \$%	HnlY	F	5 fYU	''+*	'\$\$Ge h	D7=	+%			
GadY7c	aa Yolg										
(, <i>@</i> /)	H7F		A	%%' %\$:h							
(- C =@	D@@5; 9		В	&!\$\$ Ce:	h						
& F5J	19@B;		@	% ,,'\$\$ Ge :]	h						
CLà d'YBi :	a VM. \$&	HndV	F	5 f YU	!!*_	'\$\$Ge h	D7 =	+\$			
QadY7c	aa Yolg										
(, @/)	H7F		Α)\$\$\$\$:h							
(- C =@	D@65; 9		В)858 Gel	h						
& F5J	19@B;		@	% ,)'\$\$ G erl	h						
GLa d'YBi :	a VIf. \$	HndV	F	5f y U)&)	'\$\$Ge h	D7 =	+%			
dadY7c	aa Yolg										
, <i>@</i> / ;	H7F		A	+)'\$\$:h							
(- C =@	D@ 5; 9		В	')'\$\$ Gel	h						
)& F5J	19@ B ;		@	&%'\$\$ Gel	h						

BY kcf)A\$				BLAY	< U	gy Y Acf[U	7 ci b m i	MdbU5	6]fcbfh			
6FUBAV	HFK%		BLAY	HI jk < Lík	uhHflufcil YY	XFK%	IgX	H5L=K	5M	5fYU)ž(,) Ge h	
GWich	\$%	сZ	%	: fca.	Fibkun%!	1 *		HŁ.	9N Yc	ZUjYaYih		@Liji7chgʻi	% # # 8\$\$ \$/
GfZW	57	:Ua]m	5@ 8CH5 7	HI]kừg	NdbY			7U	Y cfm			FU <u></u> . D	
5fYU)2	(,) Ge h	@ b [h.		%\$\$:h		KDA.)\$:h				
GU/g		GUV@ b [}	ì .	:h	n GU	VKJAA.		:h		>c]bh@	Mb[h.	:	h
Gai XX.		ClfWiHd	Y		; f	UXY \$				@Ubyg	\$		
GW db7	caa Yilg												
Kɗ_8U	N %##%\$\$	Kď	Hnly By	x 7dd fii V j	ĕb?≐b]ij U		70	XX BI	! -B	-g	AUcf#	√F. HiY	
Kcf_80	N %##\$\$\$%	Kď	Hnly By	k 7db jfi V j	6b?≐b]ij U		70	XX BI	! -B	-g	AUcf/	√F. HiY	
Kcf_8U	Y *#488%	Kď	_ Hnly 7f0	wguji !	57		70	XX 70	157	=g	AUcf?	•∕F.:Ugy	
Kcf_80	Y * 1868%	Kď	_Hnly Gf	awgu!7	⁄cUHf		70	XX (G	7 H	-g	AUcf/	•∕F.:Ugy	
@L g hhgl	'8UTY %888	\$%	HHU	Glad¥g	%		Gfj¥ð	X %					
7cbXlich	ng D7=, *≎	\$											
=bgfNJjct	o7caa¥blg												
GadYB	iaW£.\$%	Hall	F	1	5 fYU)(,)	'\$\$Ge h		D7 = *	\$			
GadY7	caa Hig												
(, <i>@</i> /	′ H7 F		@) 855	:h								
(, <i>@</i> /	H7 F		Α	' &'\$\$; :h								
)+ K9	95 H: 9F=B ;		@	&(859	Geh								
)+ K9	95H:9F=B;		Α	&t(855	Chh								


BYIkcf)A\$		BLAY	< لالغ ک Ad	[Ub7cibhiFY]dbU3	5 jfdefh	
6fubw HFK'*	BLàY	HI kunhfbbci < th y Y	bXFK'∗'Ig	K H5L-K5M	5f¶U) ≱, + G eh
GWJch \$%	cZ %	: fca. Fibkun%	! ! *	HŁ. 924 Yd	ZUjYaYih	@ Lighi7chghi ,#{(#8888
GifZW 57 :1	La]m 5@8CH57	7HI]kung NabX		7 Uh(cfm		FUb D
5fYU))),+(Geh @Mb[h	. %\$\$:h	KDA.)\$:h		
GUvg	GW@ b [h.	:h G	VKM.	:h	>cjbh@Yb	ի. ։հ
-	Gryvii Indy		UXY \$		eusg	8
GWjcb7caa¥blg						
Kcf_8UY %#%&\$	Kcf_Hnly B	k 7cbglii Vljcb! =bjlji U		7cXY BI !=B	=gAt	λcfA∕F. Hiγ
Kcf_8UY(,#%#8888	Kcf_Hrly B	ik 7chglii Vijch? ≐bjiji U		7cXX BI !=B	≓gAt	δcfA∕F. Hiγ
Kcf_8UY *##\$\$%	Kcf_Hnl¥ 7f	UWGUJH 1:37		7cX 7G57	=gAt	hdfA∕F.:Ugy
Kcf_8UY *#888%	Kcf_HnlY G	EUWGU! 7dUHf		7cX (G7H	≓gAt	ccfA∕F.:UgY
@Ugjibgl'8UY %#8#8%	ня	CladYg %	GIJ	WNX %		
7db X] dbg D7=)(
=bgNMjcb7caaYblg						
Glad YBia VYf. \$%	Hnly F	5fy)), +' 88 Ge h	D7,)	(
QadY7caa¥ilg						
(, @/ H7 F	@	+, ' 88 : h				
(, @∕ H7 F	Α	(, (' \$\$: h				
)+ K95H:9F=B;	@	&-('\$\$ Ge h				
)+ K95H:9F=B;	Α	&-''58 Geh				

APPENDIX E


DISTRESS SUMMARY REPORT

11	Ð.	0	D	ο	• •) . V)) U	•	ο	j	j y) .
0				°#			(9 V8@y) (9° Ouk Vo†- ko #k #N9/8''''''	#)	ο		7	
•				°#			(9 V89y) (9° Ouk' Vo†- koʻ #k #1098''''''	#)	U		7	
0				°Ħ			k° †- (1978)	#)	0		07	
•				°#			() V89y) ()" Ouk" Vo†- ko #k" #N9/8"****	#)	Ο		7	
0				°#			(9 V89y) (9° Ouk' Vo†- ko #k #N98''''''	#)	U		7	
0				°#			\@H@8	\		V°		07	
0				°‡			‡-°u=-k @8	#)	0		07	
0				°‡			‡-°u=-kØ8	#)	U		07	
k				°#			(9 V89y) (9° Ouk' Vo†- koʻ #k #1098''''''	#)	ο		7	
k				°#			(9 V892y) (9° Ouk' Vo†- koʻ #k: #109/8'''''''	#)	U		7	
k				°‡			‡-°u=-kØ8	#)	0		07	
u#				°‡			" @ #M# & # M9 8"	#)	0		07	
u#				°#			(9 V892y) (9° Ouk' Vo†- koʻ #k: #109/8'''''''	#)	ο		7	
u#				°#			(9, V899y) (9° Ouk' Vo†- koʻ #k: #100/8*****	#)	U		7	
u#				°#			‡-°u⊧-k@8	#)	0		07	
u#				°#			‡-°u=-kØ8	#)	U		07	
u#				°#			07 V829y) 0°° Ouk' Vo†- ko #k #N078*****	#)	ο		7	
u#				°#			0 V80y) 0° Ouk° Vo†-ko #k° #N08''''''	#)	U		7	

" `@	0	D	0	o •) .)	•	ο	j	j	.)
		<u> </u>			V	<u></u>	U			<u> </u>	J)
u#			°#			k° †- 00/8	#)	0		07	
u⊧°V8			°#			OVSQy) & Ouk Vot-koʻ	#)	ο		7	
u- vo			π			#k° #N9/8'''''	#)	U		·	
°VD			°#			0 V80y) & Ouk Vot-ko	#	``	U		7	
u⊧°V8			#			#k° #N9/8	#)	U		/	
u⊧°V8			°‡			k° †- 00/8	#)	0		07	
u⊧°V8			°#			‡-°u=-k@8	#)	0		07	
u⊧°V8			°‡			‡-°u=-kØ8	#)	U		07	
u⊧°V8			°‡) - hk co®V	\		U		07	
			o 11			OVSey) @ Ouk Vot-ko		``			-	
u⊧°V8			°#			# k ° # N9 8	#)	0		7	
			o 11			OVSey) @ Ouk Vot-ko		``			-	
u⊧°V8			°#			#46 #1098	#)	U		7	
u⊧°V8			°‡			h°u#⊧@/8'	#)	0		07	
u⊧°V8			°‡			k° †- 00/8'	#)	=		07	
u⊧°V8			°‡			k° †- 00/8.	#)	0		07	
u⊧°V8			°‡			k° †- 00)/8.	#)	U		07	
u⊧°V8			°‡			‡-°u⊧-kØ8	#)	U		07	
° V D			°#			OVSey) & Ouk Vot-ko	ш	``	U		7	
u⊧°V8			#			# k # N9 8	#)	U		/	
u⊧°V8			°‡			\@h@8'	\		V°		07	
u⊧°V8			°‡			k° †- 00/8	#)	0		07	
u⊧°V8			°‡			\@h@8'	\		V°		07	
1*			°#			OVSey) @ Ouk Vot-ko	<u>и</u>	``			~	
uk‡			Ŧ			#L° #108	#)	Ο		7	
14			° 11			OV89y) & Ouk Vot-koʻ		```	.		~	
uk‡			°#			#16 #1098	#)	U		7	
uk‡			°#			‡-°u=-k@8	#)	0		07	

**	D	0	Ð.	Ο	• •) . V)) U	•	ο	j	j. y) .
uk‡				°#			‡-°u=- k@8	#)	U		07	
uk‡				°#			() V8@y) @° Ouk° Vo†- koʻ #k° # V@ 8`````	#)	Ο		7	
uk‡				°#			() V8@y) @° Ouk° Vo†- koʻ #k° # V@ 8`````	#)	U		7	
uk‡				°‡			‡-°u=-k@8	#)	0		07	
uk‡				°#			‡-°u=- k@8	#)	U		07	

h###

APPENDIX F

PAVEMENT CONDITION REPORTS

F1: Section Forecasted Pavement Condition Rating

F2: Branch PCI Rating

F3: Branch FOD Rating

Appendix F1 Forecasted Section PCI

Branch ID	Section ID	Forecasted PCI								
DIAIICII ID	Section ID	2021	2022	2023	2024	2025	2026	2027		
A01	01	72	70	68	66	63	61	59		
A01	02	53	51	49	47	44	42	40		
R1836	01	52	47	43	39	35	30	26		
TC01	01	44	40	37	33	30	26	22		
TC02	01	59	54	49	46	44	40	37		
THANG01	01	52	48	45	43	39	36	32		
THANG01	02	49	46	44	40	37	33	30		
THANG02	01	63	59	54	49	46	44	40		
THANG02	02	94	92	89	87	84	82	80		
TTRW18	01	49	46	44	40	37	33	30		
TTRW36	01	45	43	40	36	33	29	25		

Hartselle-Morgan County Regional Airport (5M0)

DI[Y%Z&

6fUW7d5¥jjd5FYddh

%**#8}:#8\$8\$**

6fUW:8	Bi a VifcZ GWJcbg	Gia GXVIJCb @Yb[h`H]H_	5j [ˈGYVIJcb K]Xh fil H.	Hi Y5fYU fGe: H.	IgY	5j ¥fL[¥ D7=	Głubalfx 83j Juljeb D7=	
5 8%	&)%'\$\$	%)'\$\$,'ž&'8	5DFCB	*+') \$	- ') \$	*, '*)
F%' *	%	' \$ 3 '\$\$	+)'\$\$	&-ž&'\$	FI BK5M	**'\$\$	\$\$\$	**'\$\$
H7\$%	%	%)'\$\$	' +' \$\$	*ž*\$\$\$	H5L-K5M) \$ \$\$	\$\$\$) \$ \$\$
H 7%&	%	%% \$\$	' ' '88	- 2582-'55	H5L=K5M	*, '\$\$	\$\$\$	*, '\$\$
Ht 5B; \$%	&	'(\$\$\$	(*')\$	%ž)+'\$\$	H5L=K5M	*%)\$	%) \$	*%+)
Ht 5B; \$&	&	'(('\$\$	+)')\$	& * * * * * * *	H5L=K5M	, (')\$	%')\$, * 1 <u>1</u> *
HFK%	%	%\$\$`\$\$) \$\$\$)ž,)'88	H5L=K5M	* \$ \$\$	\$\$\$	* \$ \$\$
HFK' *	%	%\$\$`\$\$) \$\$\$)},+'\$\$	H5L=K5M)('\$\$	\$\$\$)('\$\$

%**48)**.**+8888**

6fUbW7cbXlljcbFYccfh

DL[Y&c7&

D.j Ya YHBUWUZY 5@8CH57ca VJbY888%&

I gY7UN cfm	Bi a Wf cZ GWljcbg	HERU 'SFYLINGe: HL	5f]ha ¥}W 5j ¥U[YD7=	5j YfU YGHB D7=	KY][\]BX 5j HU[YD7=
5DFCB	&	, 'Ž&'\$\$	*+')	-')\$	*, '*)
FI BK5M	%	&-ž&'\$\$	**' '\$\$	8'55	**' '\$ \$
H5L=K5M	,	+(25(-'55	*)')\$	%';(+\$*,
5 @@	% o	(&:3) -+' 5 8	*)"%	6 % 83) \$	*+"' '

%**#8}**#**8\$8\$**

6fUbW7dbXHdbFYddfh

DI[Y%78

DjYa YHBUWAJY 5@8CH57ca VJbY888%&

6fUbW:-8	Bi a WfcZ GWJcbg	Gia GWJcb @b[h Hill.	5j [ˈGYWJcb K]XA HHL	Hi Y5fYU fGe: H	IgY	5j ¥fU[Y : C8 [:] =bXM	Głubal £X 8¥j jUjcb : C8 ⁻ bXM	
A01	2	515.00	135.00	83,623.00	APRON	32.50	9.50	31.35
R1836	1	3,599.00	75.00	269,925.00	RUNWAY	34.00	0.00	34.00
TC01	1	135.00	37.00	6,760.00	TAXIWAY	50.00	0.00	50.00
TC02	1	161.00	33.00	9,027.00	TAXIWAY	32.00	0.00	32.00
THANG01	2	340.00	46.50	17,957.00	TAXIWAY	37.00	0.00	37.00
THANG02	2	344.00	75.50	29,233.00	TAXIWAY	15.50	13.50	13.04
TTRW18	1	100.00	50.00	5,485.00	TAXIWAY	40.00	0.00	40.00
TTRW36	1	100.00	50.00	5,587.00	TAXIWAY	46.00	0.00	46.00

%**48}.#8888**

6fUbW7cbXlljcbFYcfh

DL[Y&c7&

D.j Ya YHBUWUBY 5@8CH57ca VIbY888%&

I gY7UN cfm	Bi a Wf cZ GWljcbg	HERU 'SFYURGe: HL	5f]ha ¥]W 5j ¥U Y: C8	5j MU YCHB : C8 45XM	KY[[\]ħX 5j ¥fU[Y: C8'ib
APRON	2	83,623.00	32.50	9.50	31.35
RUNWAY	1	269,925.00	34.00	0.00	34.00
TAXIWAY	8	74,049.00	34.13	13.72	29.02
ALL	11	427,597.00	33.82	12.40	32.62

APPENDIX G

SAFETY AND PREVENTIVE MAINTENANCE POLICIES

Appendix G1
Localized Safety (Stopgap) Repair Policy

Distress	Distress Severity	Description	Code	Work Type	Work Unit
41	High	ALLIGATOR CR	PA-FD	Patching - AC Full-Depth	SqFt
43	High	BLOCK CR	CS-AC	Crack Sealing - AC	Ft
45	High	DEPRESSION	PA-FD	Patching - AC Full-Depth	SqFt
47	High	JT REF. CR	CS-AC	Crack Sealing - AC	Ft
48	High	L & T CR	CS-AC	Crack Sealing - AC	Ft
50	High	PATCHING	PA-FD	Patching - AC Full-Depth	SqFt
53	High	RUTTING	PA-FD	Patching - AC Full-Depth	SqFt
54	High	SHOVING	PA-PD	Patching - AC Partial-Depth	SqFt
55	NA	SLIPPAGE CR	PA-PD	Patching - AC Partial-Depth	SqFt
56	High	SWELLING	PA-FD	Patching - AC Full-Depth	SqFt
61	High	BLOW-UP	SL-PC	Slab Replacement - PCC	SqFt
61	Medium	BLOW-UP	PA-PF	Patching - PCC Full Depth	SqFt
62	High	CORNER BREAK	PA-PF	Patching - PCC Full Depth	SqFt
63	High	LINEAR CR	PA-PF	Patching - PCC Full Depth	SqFt
63	Medium	LINEAR CR	CS-PC	Crack Sealing - PCC	Ft
64	High	DURABIL. CR	SL-PC	Slab Replacement - PCC	SqFt
64	Medium	DURABIL. CR	PA-PF	Patching - PCC Full Depth	SqFt
66	High	SMALL PATCH	PA-PP	Patching - PCC Partial Depth	SqFt
67	High	LARGE PATCH	PA-PF	Patching - PCC Full Depth	SqFt
70	High	SCALING	SL-PC	Slab Replacement - PCC	SqFt
71	High	FAULTING	GR-PP	Grinding (Localized)	Ft
72	High	SHAT. SLAB	SL-PC	Slab Replacement - PCC	SqFt
74	High	JOINT SPALL	PA-PP	Patching - PCC Partial Depth	SqFt
75	High	CORNER SPALL	PA-PP	Patching - PCC Partial Depth	SqFt
76	High	ASR	SL-PC	Slab Replacement - PCC	SqFt

Distress	Distress Severity	Description	Code	Work Type	Work Unit
41	Medium	ALLIGATOR CR	PA-AD	Patching - AC Full-Depth	SqFt
41	High	ALLIGATOR CR	PA-AD	Patching - AC Full-Depth	SqFt
42	N/A	BLEEDING	PA-AS	Patching - AC Partial-Depth	SqFt
43	High	BLOCK CR	PA-AD	Patching - AC Full-Depth	SqFt
43	Medium	BLOCK CR	CS-AC	Crack Sealing - AC	Ft
44	Low	CORRUGATION	PA-AS	Patching - AC Partial-Depth	SqFt
44	High	CORRUGATION	PA-AS	Patching - AC Partial-Depth	SqFt
44	Medium	CORRUGATION	PA-AS	Patching - AC Partial-Depth	SqFt
45	Medium	DEPRESSION	PA-AD	Patching - AC Full-Depth	SqFt
45	Low	DEPRESSION	PA-AD	Patching - AC Full-Depth	SqFt
45	High	DEPRESSION	PA-AD	Patching - AC Full-Depth	SqFt
47	High	JT REF. CR	CS-AC	Crack Sealing - AC	Ft
47	Medium	JT REF. CR	CS-AC	Crack Sealing - AC	Ft
48	High	L & T CR	CS-AC	Crack Sealing - AC	Ft
48	Medium	L & T CR	CS-AC	Crack Sealing - AC	Ft
49	N/A	OIL SPILLAGE	PA-AD	Patching - AC Full-Depth	SqFt
50	High	PATCHING	PA-AD	Patching - AC Full-Depth	SqFt
50	Medium	PATCHING	PA-AD	Patching - AC Full-Depth	SqFt
52	High	RAVELING	PA-AS	Patching - AC Partial-Depth	SqFt
53	High	RUTTING	PA-AD	Patching - AC Full-Depth	SqFt
53	Low	RUTTING	PA-AD	Patching - AC Full-Depth	SqFt
53	Medium	RUTTING	PA-AD	Patching - AC Full-Depth	SqFt
55	N/A	SLIPPAGE CR	PA-AD	Patching - AC Full-Depth	SqFt
56	Low	SWELLING	PA-AD	Patching - AC Full-Depth	SqFt
56	Medium	SWELLING	PA-AD	Patching - AC Full-Depth	SqFt
61	Low	BLOW-UP	PA-PF	Patching - PCC Full Depth	SqFt
61	Medium	BLOW-UP	PA-PF	Patching - PCC Full Depth	SqFt
61	High	BLOW-UP	PA-PF	Patching - PCC Full Depth	SqFt
62	Medium	CORNER BREAK	PA-PF	Patching - PCC Full Depth	SqFt
62	High	CORNER BREAK	PA-PF	Patching - PCC Full Depth	SqFt
62	Low	CORNER BREAK	CS-PC	Crack Sealing - PCC	Ft
63	Medium	LINEAR CR	CS-PC	Crack Sealing - PCC	Ft
63	High	LINEAR CR	PA-PP	Patching - PCC Partial Depth	SqFt
64	Medium	DURABIL. CR	PA-PF	Patching - PCC Full Depth	SqFt
64	High	DURABIL. CR	SL-PC	Slab Replacement - PCC	SqFt
65	High	JT SEAL DMG	JS-LC	Joint Seal (Localized)	Ft
65	Medium	JT SEAL DMG	JS-LC	Joint Seal (Localized)	Ft
66	High	SMALL PATCH	PA-PP	Patching - PCC Partial Depth	SqFt
66	Medium	SMALL PATCH	PA-PP	Patching - PCC Partial Depth	SqFt
67	Medium	LARGE PATCH	PA-PF	Patching - PCC Full Depth	SqFt

Appendix G2 Localized Preventive Repair Policy

Distress	Distress Severity	Description	Code	Work Type	Work Unit
67	High	LARGE PATCH	PA-PF	Patching - PCC Full Depth	SqFt
69	N/A	PUMPING	JS-LC	Joint Seal (Localized)	Ft
70	Medium	SCALING	PA-PP	Patching - PCC Partial Depth	SqFt
70	High	SCALING	SL-PC	Slab Replacement - PCC	SqFt
71	High	FAULTING	GR-PP	Grinding (Localized)	Ft
71	Medium	FAULTING	GR-PP	Grinding (Localized)	Ft
72	Medium	SHAT. SLAB	SL-PC	Slab Replacement - PCC	SqFt
72	High	SHAT. SLAB	SL-PC	Slab Replacement - PCC	SqFt
74	High	JOINT SPALL	PA-PP	Patching - PCC Partial Depth	SqFt
74	Medium	JOINT SPALL	PA-PP	Patching - PCC Partial Depth	SqFt
75	Medium	CORNER SPALL	PA-PP	Patching - PCC Partial Depth	SqFt
75	High	CORNER SPALL	PA-PP	Patching - PCC Partial Depth	SqFt
76	Medium	ASR	SL-PC	Slab Replacement - PCC	SqFt
76	High	ASR	SL-PC	Slab Replacement - PCC	SqFt

Appendix G2 Localized Preventive Repair Policy

APPENDIX H

M&R UNIT COSTS

H1: M&R Unit CostsH2: Component Costs for RepairH3: Airport Category

Maintenance and Repair (M&R) Unit Costs

The M&R costs developed for the ALDOT PMP include costs for maintenance, preservation, and repair activities and are described below.

Unit Costs Source Data

The source for the M&R costs data is RSMeans, which has data for 14 locations throughout Alabama, as identified by the yellow highlighted boxes in Figure 1. The cost data is presented in terms of individual line items like asphalt wearing course, aggregate base etc., which were consolidated to develop the activity costs described below.

The cost data show a distinct difference in costs between locations north and south of Birmingham, especially for the higher value items like the asphalt layers. Therefore, the unit costs were developed accordingly for the airports north and south of Birmingham, as identified in Figure 1. Appendix H2 presents the component costs used in developing the M&R costs.

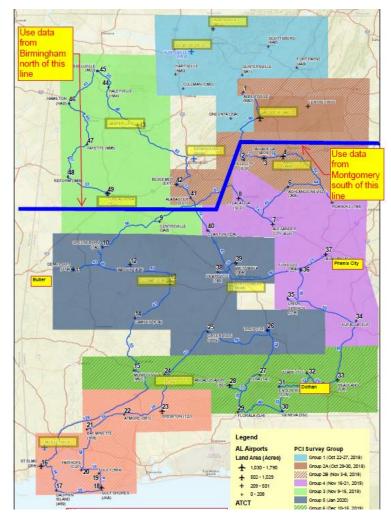


Figure 1: RSMeans Unit Costs Locations.

Maintenance & Repair (M&R) Activities

Maintenance activities are localized activities which are typically assigned in the first year of the M&R plan based on the observed distresses.

Repair activities are further subdivided into preservation, rehabilitation, and reconstruction. Repair activities are conducted for larger areas, typically at the section level and are assigned based on the Critical Pavement Condition Index, denoted as CP in Table 1. The CP is based on the section's rank or importance within the overall network and typically ranges from 55 to 70. The CP was set at 70 for the ALDOT runway pavements and 65 for the other pavements.

Activity Type	PCI	Activity	
Preservation		Runway Surface Treatment	
Preservation	> CP	Taxiway and Apron Surface Treatment	
	> CP	2" AC OL ¹	
Rehabilitation	55 - CP	Mill 2" & 2" AC OL	
	45 - 55	Mill 2" & 3" AC OL	
Reconstruction 0 - 45		Reconstruct with AC	

¹For Sections with Structural Distress and PCI greater than Critical PCI

The depths for the milling and overlay (AC OL) in Table 1 were established by creating a balance between removal of surficial distress and providing additional pavement structural capacity. All overlay options include full-depth patching to repair localized distresses.

From the FAA 5010 records, the Alabama airport network includes a wide range of allowable aircraft loads. The airports were divided into three categories of allowable aircraft loads based on requirements for minimum pavement thickness and the use of a P-401 surface layer. The categories are based on the aircraft maximum gross takeoff weight (MGTOW) and include: less than 12,500 lbs, 12,500 to 30,000 lbs, and 30,000 to 100,000 lbs. Appendix H3 presents the category for each airport.

For any sections requiring reconstruction, the pavement sections were established primarily in accordance with the requirements in Table 3 of the FAA's Advisory Circular 150/5320-6F. The pavement sections used for developing the cost estimates are:

\triangleright	≤ 12,500 lbs	4" P-403 (State HMA Mix) + 6" P-209 Base
------------------	--------------	--

- 12,500 30,000 lbs 4" P-403 (State HMA Mix) + 8" P-209 Base
- 30,000 100,000 lbs 5" P-401 + 10" P-209 Base

It is important to note that while the FAA requires a stabilized base for those pavements that support aircraft operations with MGTOWs that are greater than 100,000 lbs, the number of such operations is minimal for those airports shown in Appendix H3. As a result, the cost of a stabilized base is excluded in the development of the unit costs for ALDOT's PMP update. However, based on the Engineer's future design and aircraft fleet mix development, project-level construction work could include the use of a stabilized base at that time.

M&R Unit Costs

Paving projects typically include additional project costs like mobilization, design, construction administration and inspections, and drainage improvements. A summary of non-direct pavement construction line items has been included in the unit costs in Tables 5 and 6 as described below. These non-direct items are expressed as a percentage of the total component costs for each activity.

These non-direct pavement construction items were developed from API's extensive experience with APMP project cost estimation. These percentages may vary for Alabama airport construction projects; however, since the direct pavement scope of work is estimated in a network-level evaluation, these conservative estimates serve as a good starting point for the development of realistic total project costs and annual APMP budgets for ALDOT. For repair activities such as Mill & Overlay, which typically do not include significant drainage work, the corresponding multiplier was reduced by 50 percent. The non-direct cost factors are presented in Table 2.

Factor	Function of	Estimate			
Factor		Preservation	Rehabilitation	Reconstruction	
Mobilization	All costs, less design	10%	10%	10%	
Drainage	Paving costs	-	4%	8%	
Improvements	-				
Contingency	All costs, less mobilization and design	10%	20%	20%	
Design & CM	All costs, less mobilization and design	15%	20%	20%	

The M&R unit costs for maintenance, preservation, and repair activities were developed from the RSMeans cost data and are presented in the following section.

Maintenance

The maintenance activities include crack seal, and full and partial-depth patching. The unit costs are presented in Table 3.

Table 3: Unit Costs for Maintenance.

Activity	Unit Cost	Unit
Seal Cracks - AC	\$3.95	lf
AC Full-Depth Patching	\$25.05	sf
AC Partial-Dept Patching	\$16.28	sf
Seal Cracks – PCC	\$6.00	lf
PCC Full-Depth Patching	\$35.00	sf
PCC Partial-Depth Patching	\$175.00	sf
Jt. Seal	\$8.00	lf
Slab Replacement	\$20.00	sf

Preservation

The unit costs for the surface treatments are presented in Table 4. They include sealing of cracks and application of pavement markings.

Activity	Unit Cost	Unit
Runway Surface Treatment	\$0.57	sf
Taxiway and Apron Surface Treatment	\$0.88	sf

Table 4: Unit Costs for Preservation Activities.

Rehabilitation and Reconstruction

As discussed previously, repair activities are also divided into rehabilitation and reconstruction. The unit costs for airport repair for the Northern Region (Birmingham Area) and Southern Region (Montgomery Area) are shown in Tables 5 and 6, respectively.

	Activity	MGTOW, thousand lbs			
Activity Type		≤ 12.5	12.5-30	30-100	
	2" AC OL	\$3.78		\$4.19	
Rehabilitation	Mill 2" & 2" AC OL	\$4.15		\$4.56	
	Mill 2" & 3" AC OL	\$5.18		\$5.79	
Reconstruction	AC Reconstruction	\$8.40 \$9.10		\$10.91	

Table 5: Unit Costs for Repair Activities, Northern Region.

Table 6: Unit Costs for Repair Activities, Southern Region.						
	Activity	MGT	OW, thousand	lbs		
ty Type	Activity			-		

	Activity	MGTOW, thousand lbs			
Activity Type		≤ 12.5	12.5-30	30-100	
	2" AC OL	\$3.54		\$3.91	
Rehabilitation	Mill 2" & 2" AC OL	\$3.90		\$4.27	
	Mill 2" & 3" AC OL	\$4.82		\$5.37	
Reconstruction	AC Reconstruction	\$7.63 \$8.25		\$9.87	

Appendix H2 Component Costs for Repair

Activity Type	Unit	Birmingham (Northern)	Montgomery (Southern)	Comments
Milling 1" to 3"	SY	\$2.08	\$2.01	
Pavement Demolition	SY	\$6.34	\$6.12	
Haulage - For Demolition & AC	CY	\$6.08	\$5.87	
Haulage for 12" Thick Demolition	SY	\$2.03	\$1.96	
Haulage for 2" Thick AC Paving	SY	\$0.34	\$0.33	
Haulage for 3" Thick AC Paving	SY	\$0.51	\$0.49	
Haulage for 4" Thick AC Paving	SY	\$0.68	\$0.65	
AC Wearing Course	Ton	\$97.42	\$86.90	
AC Binder Course	Ton	\$87.80	\$78.17	
P401 - For airports with >60 kip aircraft	Ton	\$116.90	\$104.28	Assumed P401 cost to be 20% greater than AC Wearing Course
6" Aggregate Base (P208)	SY	\$10.17	\$9.12	
8" Aggregate Base (P208)	SY	\$13.29	\$11.89	
6" P209 Aggregate Base	SY	\$12.20	\$10.94	Assumed P209 cost to be 20% greater than P208
8" P209 Aggregate Base	SY	\$15.95	\$14.27	Assumed P209 cost to be 20% greater than P208
10" P209 Aggregate Base	SY	\$19.94	\$17.84	Direct multiplier for 10" from 8"
4" P154 Aggregate Base	SY	\$5.42	\$4.86	Assumed P154 cost to be 20% lower than P208
6" P154 Aggregate Base	SY	\$8.14	\$7.30	Assumed P154 cost to be 20% lower than P208
Pavement Markings	sf	\$1.48	\$1.39	

Appendix H3 Airport Category

Destau	Citra		Max Gross	Weight (Tho	ousand lbs)		Category	
Region	City	FAA ID	S	D	2D	Max GW		
	Reform	3M8	12.5	-	-	12.5	<= 12,500	
Birmingham	Fayette	M95	15.0	-	-	15.0	12,500-30,000	
	Hamilton	HAB	15.0	-	-	15.0	12,500-30,000	
	Scottsboro	4A6	15.0	-	-	15.0	12,500-30,000	
	Alabaster	EET	16.0	-	-	16.0	12,500-30,000	
	Centre-Piedmont	PYP	16.0	-	-	16.0	12,500-30,000	
	Fort Payne	4A9	16.0	-	-	16.0	12,500-30,000	
	Haleyville	1M4	20.0	-	-	20.0	12,500-30,000	
	Hartselle	5M0	20.0	-	-	20.0	12,500-30,000	
	Guntersville	8A1	24.0	-	-	24.0	12,500-30,000	
	Cullman	CMD	30.0	-	-	30.0	12,500-30,000	
	Russellville	M22	30.0	-	-	30.0	12,500-30,000	
	Jasper	JFX	50.0	-	-	50.0	> 30,000	
	Oneonta	20A	20.0	35.0	55.0	55.0	> 30,000	
	Bessemer	EKY	60.0	60.0	-	60.0	> 30,000	
	Albertville	8A0	60.0	90.0	130.0	130.0	> 30,000	
	Madison	MDQ	60.0	75.0	140.0	140.0	> 30,000	
	Decatur	DCU	75.0	125.0	150.0	150.0	> 30,000	
	Tuscaloosa	TCL	61.0	87.0	168.0	168.0	> 30,000	
	Gadsen	GAD	90.0	115.0	195.0	195.0	> 30,000	
	Florala	0J4	-	-	-	-	<= 12,500	
	Elba	14J	4.0	-	-	4.0	<= 12,500	
	Headland	016	12.0	-	-	12.0	<= 12,500	
	Roanoke	7A5	12.0	-	-	12.0	<= 12,500	
	Greenville	PRN	15.0	-	-	15.0	12,500-30,000	
	Union Springs	07A	15.0	-	-	15.0	12,500-30,000	
	Wetumpka	08A	15.0	-	-	15.0	12,500-30,000	
	Atmore	OR1	16.0	-	-	16.0	12,500-30,000	
	Clanton	02A	16.0	-	-	16.0	12,500-30,000	
	Eufaula	EUF	16.0	-	-	16.0	12,500-30,000	
Montgomery	Geneva	33J	16.0	-	-	16.0	12,500-30,000	
	Greensboro	7A0	16.0	-	-	16.0	12,500-30,000	
	Centreville	0A8	18.0	-	-	18.0	12,500-30,000	
	Ashland-Lineville	26A	20.0	-	-	20.0	12,500-30,000	
	Sylacauga	SCD	20.0	-	-	20.0	12,500-30,000	
	St. Elmo	2R5	23.0	-	-	23.0	12,500-30,000	
	Ozark	71J	-	25.0	-	25.0	12,500-30,000	
	Camden	61A	27.0	-	-	27.0	12,500-30,000	
	Bay Minette	1R8	28.0	-	-	28.0	12,500-30,000	
	Foley	5R4	28.0	-	-	28.0	12,500-30,000	
	, Tuskegee	06A	28.5	-	-	28.5	12,500-30,000	

Appendix H3 Airport Category

Dogion	City		Max Gross	Weight (The	ousand lbs)		Catagoni	
Region	City	FAA ID	S	D	2D	Max GW	Category	
	Alexander City	ALX	30.0	-	-	30.0	12,500-30,000	
	Dauphin Island	4R9	30.0	-	-	30.0	12,500-30,000	
	Pell City	PLR	30.0	-	-	30.0	12,500-30,000	
	Prattville	1A9	30.0	-	-	30.0	12,500-30,000	
	Enterprise	EDN	-	-	-	-	> 30,000	
	Evergreen	GZH	30.0	50.0	-	50.0	> 30,000	
	Marion	A08	30.0	50.0	-	50.0	> 30,000	
	Selma	SEM	33.0	54.0	-	54.0	> 30,000	
Montgomory	Fairhope	CQF	36.0	58.0	-	58.0	> 30,000	
Montgomery	Brewton	12J	40.0	60.0	-	60.0	> 30,000	
	Demopolis	DYA	30.0	38.0	60.0	60.0	> 30,000	
	Monroeville	MVC	70.0	-	-	70.0	> 30,000	
	Auburn-Opelika	AUO	45.0	75.0	-	75.0	> 30,000	
	Talladega	ASN	30.0	65.0	95.0	95.0	> 30,000	
	Gulf Shores	JKA	80.0	100.0	-	100.0	> 30,000	
	Troy	TOI	24.0	80.0	140.0	140.0	> 30,000	
	Anniston	ANB	28.0	43.5	260.0	260.0	> 30,000	
	Andalusia-OPP	79J	98.0	160.0	275.0	275.0	> 30,000	

APPENDIX I

PAVEMENT CAPITAL IMPROVEMENT PROGRAM

I1: PCIP SummaryI2: Year 1 Maintenance Plan

Appendix I1 PCIP Summary

Branch & Section	2021	2022	2023	2024	2025	2026	2027
A01-01	Preventive \$1011.23 Before:78.78 After:78.78	Preventive \$1140.7 Before:76.57 After:76.57	Preventive \$1277.03 Before:74.36 After:74.36	Preventive \$1420.51	Required Project Major Above Critical \$314885.03 Before:69.93 After:100	Preventive \$122.68 Before:97.79 After:97.79	Preventive \$252.73 Before:95.58 After:95.58
A01-02	StopGap \$758.55 Before:59.78 After:59.78	StopGap \$859.01 Before:57.57 After:57.57	StopGap \$964.83 Before:55.36 After:55.36	StopGap \$1076.21 Before:53.15 After:53.15	Required Project Major Below Critical \$246832.46 Before:50.93 After:100	Preventive \$96.17 Before:97.79 After:97.79	Preventive \$198.11 Before:95.58 After:95.58
R1836-01	StopGap \$4197.87 Before:64.78 After:64.78	StopGap \$6715.58 Before:56 After:56	StopGap \$8050.38 Before:51.74 After:51.74		Preventive \$403.61 Before:98.7 After:98.7	Preventive \$808.17 Before:97.47 After:97.47	Preventive \$1167.78 Before:96.45 After:96.45
TC01-01	StopGap \$176.91 Before:53.83 After:53.83	StopGap \$213.08 Before:49.15 After:49.15	StopGap \$243.92 Before:45.81 After:45.81		Preventive \$7.99 Before:98.97 After:98.97	Preventive \$17.25 Before:97.85 After:97.85	Preventive \$30.3 Before:96.33 After:96.33
TC02-01	Preventive \$263.92 Before:70.53 After:70.53	StopGap \$120.5 Before:67.32 After:67.32	StopGap \$162.37 Before:63.41 After:63.41		Preventive \$10.67 Before:98.97 After:98.97	Preventive \$23.04 Before:97.85 After:97.85	Preventive \$40.46 Before:96.33 After:96.33

Appendix I1 PCIP Summary

Branch & Section	2021	2022	2023	2024	2025	2026	2027
THANG01-01	Preventive \$508.28 Before:66.26 After:66.26	StopGap \$196.98 Before:62.15 After:62.15	StopGap \$253.81 Before:57.43 After:57.43	StopGap \$313.99 Before:52.49 After:52.49	Required Project Major Below Critical \$70403.61 Before:48.04 After:100	Preventive \$12.64 Before:98.98 After:98.98	Preventive \$27.56 Before:97.85 After:97.85
THANG01-02	StopGap \$125.23 Before:63.61 After:63.61	StopGap \$164.04 Before:59.07 After:59.07	StopGap \$205.28 Before:54.14 After:54.14	StopGap \$247.64 Before:49.43 After:49.43	Required Project Major Below Critical \$50218.24 Before:45.95 After:100	Preventive \$9.02 Before:98.98 After:98.98	Preventive \$19.65 Before:97.85 After:97.85
THANG02-01	Preventive \$321.4 Before:73.06 After:73.06	Preventive \$360.89 Before:70.45 After:70.45	Preventive \$553.28 Before:67.23 After:67.23	Major Below Critical \$54208.93 Before:63.3 After:100	Preventive \$14.12 Before:98.97 After:98.97	Preventive \$30.51 Before:97.85 After:97.85	Preventive \$53.57 Before:96.33 After:96.33
THANG02-02	Preventive \$29.22 Before:98.35 After:98.35	Preventive \$54.4 Before:97.01 After:97.01	Preventive \$89.58 Before:95.22 After:95.22	Preventive \$135.07 Before:93 After:93	Preventive \$189.17 Before:90.48 After:90.48	Preventive \$249.18 Before:87.83 After:87.83	Preventive \$311.67 Before:85.22 After:85.22
TTRW18-01	StopGap \$91.88 Before:63.61 After:63.61	StopGap \$120.35 Before:59.07 After:59.07	StopGap \$150.61 Before:54.14 After:54.14	Required Project Major Below Critical \$33365.65 Before:49.43 After:100	Preventive \$6.48 Before:98.97 After:98.97	Preventive \$14 Before:97.85 After:97.85	Preventive \$24.58 Before:96.33 After:96.33
TTRW36-01	StopGap \$124.62 Before:57.99 After:57.99	StopGap \$154.83 Before:53.04 After:53.04	StopGap \$185.3 Before:48.5 After:48.5	Required Project Major Below Critical \$57210.88 Before:45.5 After:100	Preventive \$6.6 Before:98.97 After:98.97	Preventive \$14.26 Before:97.85 After:97.85	Preventive \$25.04 Before:96.33 After:96.33

Appendix I2 Localized Maintenance Plan

Deres la ID	Section	Dulla	Distress	Description	.	Distress	Distress	Percent		Work	Work	Unit	
Branch ID	ID	Policy	Code	Description	Severity	Qty	Unit	Distress	Work Description	Qty	Unit	Cost	Work Cost
A01	01	Preventive	48	L & T CR	Low	1,216	Ft	2.59	No Localized M & R	0		\$0.00	\$0
A01	01	Preventive	48	L & T CR	Medium	1,001	Ft	2.13	Crack Sealing - AC	1,001	Ft	\$3.95	\$3 <i>,</i> 952
A01	01	Preventive	52	RAVELING	Low	938	SqFt	2	No Localized M & R	0		\$0.00	\$0
A01	02	Safety	48	L & T CR	Low	2,172	Ft	5.91	No Localized M & R	0		\$0.00	\$0
A01	02	Safety	48	L & T CR	Medium	1,984	Ft	5.4	No Localized M & R	0		\$0.00	\$0
A01	02	Safety	49	OIL SPILLAGE	N/A	112	SqFt	0.3	No Localized M & R	0		\$0.00	\$0
A01	02	Safety	57	WEATHERING	Medium	18,372	SqFt	50	No Localized M & R	0		\$0.00	\$0
A01	02	Safety	57	WEATHERING	Low	18,374	SqFt	50	No Localized M & R	0		\$0.00	\$0
R1836	01	Safety	48	L & T CR	Medium	12,271	Ft	4.55	No Localized M & R	0		\$0.00	\$0
R1836	01	Safety	48	L & T CR	Low	15,911	Ft	5.89	No Localized M & R	0		\$0.00	\$0
R1836	01	Safety	57	WEATHERING	Low	265,641	SqFt	98.41	No Localized M & R	0		\$0.00	\$0 \$0
TC01	01	Safety	43	BLOCK CR	Low	375	SqFt	5.55	No Localized M & R	0		\$0.00	\$0
TC01	01	Safety	48	L & T CR	Medium	500	Ft	7.4	No Localized M & R	0		\$0.00	\$0
TC01	01	Safety	48	L & T CR	Low	132	Ft	1.95	No Localized M & R	0		\$0.00	\$0 \$0
TC01	01	Safety	57	WEATHERING	Medium	3,380	SqFt	50	No Localized M & R	0		\$0.00	\$0
TC01	01	Safety	57	WEATHERING	Low	3,380	SqFt	50	No Localized M & R	0		\$0.00	\$0
TC02	01	Safety	48	L & T CR	Low	57	Ft	0.63	No Localized M & R	0		\$0.00	\$0
TC02	01	Safety	48	L & T CR	Medium	440	Ft	4.87	No Localized M & R	0		\$0.00	\$0
TC02	01	Safety	52	RAVELING	Low	428	SqFt	4.74	No Localized M & R	0		\$0.00	\$0
THANG01	01	Safety	48	L & T CR	Medium	254	Ft	2.42	No Localized M & R	0		\$0.00	\$0
THANG01	01	Safety	48	L & T CR	Low	356	Ft	3.4	No Localized M & R	0		\$0.00	\$0
THANG01	01	Safety	52	RAVELING	Low	1,330	SqFt	12.69	No Localized M & R	0		\$0.00	\$0 \$0
THANG01	01	Safety	57	WEATHERING	Low	4,576	SqFt	43.66	No Localized M & R	0		\$0.00	\$0
THANG01	01	Safety	57	WEATHERING	Medium	4,575	SqFt	43.65	No Localized M & R	0		\$0.00	\$0
THANG01	02	Safety	45	DEPRESSION	Medium	15	SqFt	0.2	No Localized M & R	0		\$0.00	\$0 \$0
THANG01	02	Safety	48	L & T CR	Medium	263	Ft	3.52	No Localized M & R	0		\$0.00	\$0
THANG01	02	Safety	48	L & T CR	Low	68	Ft	0.91	No Localized M & R	0		\$0.00	\$0
THANG01	02	Safety	50	PATCHING	Low	12	SqFt	0.16	No Localized M & R	0		\$0.00	\$0 \$0
THANG01	02	Safety	52	RAVELING	Low	205	SqFt	2.74	No Localized M & R	0		\$0.00	\$0

Appendix I2 Localized Maintenance Plan

Branch ID	Section	Policy	Distress	Description	Severity	Distress	Distress	Percent	Work Description	Work	Work	Unit	Work Cost
BIAIICITID	ID	POlicy	Code	Description	Seventy	Qty	Unit	Distress	WORK Description	Qty	Unit	Cost	WORK COST
THANG01	02	Safety	52	RAVELING	Medium	59	SqFt	0.78	No Localized M & R	0		\$0.00	\$0
THANG01	02	Safety	52	RAVELING	High	29	SqFt	0.39	No Localized M & R	0		\$0.00	\$0
THANG01	02	Safety	57	WEATHERING	Medium	7,172	SqFt	95.93	No Localized M & R	0		\$0.00	\$0
THANG02	01	Preventive	48	L & T CR	Medium	237	Ft	1.98	Crack Sealing - AC	237	Ft	\$3.95	\$936
THANG02	01	Preventive	49	OIL SPILLAGE	N/A	112	SqFt	0.93	Patching - AC Full-Depth	158	SqFt	\$25.05	\$3,957
THANG02	01	Preventive	52	RAVELING	Low	6,157	SqFt	51.51	No Localized M & R	0		\$0.00	\$0
THANG02	02	Preventive	49	OIL SPILLAGE	N/A	102	SqFt	0.59	Patching - AC Full-Depth	147	SqFt	\$25.05	\$3,689
TTRW18	01	Safety	48	L & T CR	Medium	326	Ft	5.94	No Localized M & R	0		\$0.00	\$0
TTRW18	01	Safety	48	L & T CR	Low	52	Ft	0.95	No Localized M & R	0		\$0.00	\$0
TTRW18	01	Safety	57	WEATHERING	Low	2,742	SqFt	49.99	No Localized M & R	0		\$0.00	\$0
TTRW18	01	Safety	57	WEATHERING	Medium	2,742	SqFt	49.99	No Localized M & R	0		\$0.00	\$0
TTRW36	01	Safety	48	L & T CR	Low	78	Ft	1.4	No Localized M & R	0		\$0.00	\$0
TTRW36	01	Safety	48	L & T CR	Medium	484	Ft	8.66	No Localized M & R	0		\$0.00	\$0
TTRW36	01	Safety	57	WEATHERING	Low	2,794	SqFt	50.01	No Localized M & R	0		\$0.00	\$0
TTRW36	01	Safety	57	WEATHERING	Medium	2,793	SqFt	49.99	No Localized M & R	0		\$0.00	\$0