Alabama Dept. of Transportation Bureau of Materials and Tests Testing Manual

PROCTOR DENSITY COMPACTION SHEET

BMT Forms and Worksheets BMT-58 Revision: 5/3/94

Page 1 of 1

Sample No.	Lab No.
Operator	Date
A-Total Mass of Sample	Type Proctor Density.
B-Mass of Aggregate Retained No.4 (4.75 mm)	Dry Mass .lbs/ft³ (kg/m³)
C-Mass of Aggregate Retained 3/4 (19.0) mm	% Optimum Moisture
Total Mass of Aggregate	Total Mass of Sample
	Mass of Aggregate Retained 3/4 (19.0 mm)
$B + C = \%$ of Aggregate Passing $\frac{3}{4}$ " (19.0 mm)	Mass of Aggregate Retained No. 4 (4.75 mm)
A Sieve to be Replaced in Sample	Total Mass of Aggregate .
· · · ·	
Can No.	
1. Can + Sample Wet	
2. Can + Sample Dry	
3. Can Mass	
4. Loss in Grams (1 - 2)	
5. Dry Mass of Sample (2 - 3)	
6. % of Loss (4 ÷ 5)	
7. Wet Mass of Molded Sample	
8. Dry Mass of Molded Sample $[7 \div (6 + 100)]$	
9. Dry Mass 8 ÷ Vol. of Mold	
10 Dry Mass 1hs/ft 3 (kg/m^3) $(0 \div 0.0333 \text{ ft}^3)$	